.

L FORTH MIMIENSIONS
e ——,
2} T

I - |
VOLUME I
Numbers 1 -6

S A

IR R A SRR RS ssS AR R R s 2 2R 222 2222222222222

¢ FORTH DIMENSIONS INDEX

* VOLUME T, II, 111
*
*

INDEX COMPILED COURTESY OF =
M. TASSANO

936 DELAWARE WAY
LIVERMORE, CA 94550

*
*
*

LA AEE SRS RS REEERREE SRR R R 2 R R s X R R R R R R R R R

VOL, PAGE

ADDING MODULES, STRUCTURED PROGRAMMING

APPLE-4TH CASE

ARTIFICIAL LINGUISTICS
ASSEMBLER, 6502

ASSEMBLER, 8080

BALANCED TREE DELETION IN FASL
BASIC COMPILER REVISITED
BEGINNER'S STUMBLING BLOCK
BENCHMARK, PROJECT

BOOK REVIEW, STARTING FORTH
BRINGING UP 8080

:CASE

CASE AND PROD CONSTRUCTS
CASE AS A DEFINING WORD
CASE AUGMENTED

CASE CONTEST STATEMENT

CASE IMPLEMENTATION

CASE STATEMENT

CASE STATEMENT

CASE STATEMENT

CASE STATEMENT

CASE STATEMENT

FORTH DIMENSIONS

II1II,138
III,143
111,180
11,96
I11,175
11,23
I1,112
I11,76
111,40
11,41
I1,53
I11,189
111,187
11,73
11,60
11,55
11,81
11,82
11,84

11,87

Page 1

INDEX CONTINUED

. CASE, SEL, AND COND STRUCTURES 11,116
CASES CONTINUED 111,187
CHARLES MOORE, Speech to a Forth Convention I,60
COMPILER SECURITY 111,15

How it works and how it doesn't
COMPLEX ANALYSIS IN FORTH I11,125
CONTROL STRUCTURES, TRANSPORTABLE III,176
With compiler Security
CORRECTIONS TO METAFORTH I11,41
CP/M, SKEWED SECTORS FOR 111,182
D-CHARTS 1,30
DATA BASE DESIGN, ELEMENTS OF III,45
DATA STRUCTURES I11,110

in a telecommunications front end

DATA STRUCTURES, OPTIMIZED FOR HARDW.CONTROL III,1l18

DECOMPILER FOR SYN-FORTH 111,61
DEFINING WORDS, NEW SYNTAX FOR DEFINING 11,121
DEVELOPMENT OF A DUMP UTILITY 11,170
DIAGNOSTICS ON DISK BUFFERS 111,183
DICTIONARY SEARCHES I11,57
DISCUSSION OF 'TO! I1,19
DISK ACCESS SPEED INCREASE I11,53
DISK BUFFERS, DIAGNOSTICS ON 111,183
DISK COPYING, CHANGING 8080 FIG I11,42
DO~CASE EXTENSIONS 11,64
DO-CASE STATEMENT I1,57
DTC VS. ITC ON PDP-11 I,25
DUMP UTILITY, DEVELOPMENT OF 11,170
EDITOR I1,142
EDITOR 111,80

FORTH Inc., FIG, Starting FORTH

FORTH DIMENSIONS Page 2

INDEX CONTINUED

EDITOR EXTENSIONS

EIGHT QUEENS PROBLEM

ENTRY FOR FIG CASE CONTEST
ERATOSTHENES, SIEVE OF
EVOLUTION OF A FORTH FREAK
EXECUTION VARIABLE AND ARRAY
EXECUTION VECTORS
EXTENSIBILITY WITH FORTH
FASL, BALANCED TREE DELETION
FILE EDITOR

FILE NAMING SYSTEM

FLOATING POINT ON TRS-80

FOR NEWCOMERS

FORGET, "SMART"

FORGIVING FORGET

FORTH AND THE UNIVERSITY
FORTH CASE STATEMENT

FORTH DEFINITION

FORTH DIALECT, GERMAN, IPS
FORTH ENGINE

FORTH IMPLEMENTATION PROJECT
FORTH IN LASER FUSION

FORTH IN LITERATURE

FORTH LEARNS GERMAN

FORTH LEARNS GERMAN, Part 2
FORTH POEM ' :SONG'

FORTH VS. ASSEMBLY

FORTH DIMENSIONS

11,156
11,6
I1,67
111,181
1,3
11,109
I11,174
I,13
11,96
11,142
11,29
111,184
I,11
11,154
11,154
I11,101
11,78
1,18
11,113
111,78
I,41
I11,102
11,9
1,5
1,15
1,63
1,33

Page 3

INDEX CONTINUED

FORTH, IMPLEMENTING AT UNIV. ROCHESTER

FORTH, The last ten years & next 2 weeks
Speech by Charles Moore

FORTH-85 "CASE" STATEMENT
FUNCTIONAL PROGRAMMING AND FORTH
GAME OF 31

GAME OF MASTERMIND

GAME OF REVERSE

GAME, TOWERS OF HANOI
GENERALIZED CASE STRUCTURE
GENERALIZED LOOP CONSTRUCT
GERMAN FORTH DIALECT, IPS
GERMAN REVISITED

GERMAN, FORTH LEARNS

GERMAN, FORTH LEARNS, Part 2
GLOSSARY DOCUMENTATION

GODO CONSTRUCT, KITT PEAK
GRAPHIC GRAPHICS

GRAPHICS, SIMULATED TEK. 4010
GRAPHICS, TOWERS OF HANOI
GREATEST COMMON DIVISOR

HELP

HIGH SPEED DISK COPY
IMPLEMENTATION NOTES, 6809
INCREASING DISK ACCESS SPEED, FIG
INPUT NUMBER WORD SET
INTERRUPT HANDLER

IPS, GERMAN FORTH DIALECT

JUST IN CASE

FORTH DIMENSIONS

I11,105

1,60

1,50
I11,137
II1T,154
I11,158
I1I1,152

11,32
111,190
I1,26

11,113

11,89
111,185
111,156

11,32

11,166

I,19
1,34

11,3
111,53

11,129
111,116

I1,113

11,37

Page 4

INDEX CONTINUED

KITT PEAK GODO CONSTRUCT

LOCAL VARIABLES, TURNING STACK INTO
LOOP, A GENERALIZED CONSTRUCT

MAPPED MEMORY MANAGEMENT

MARKETING COLUMN

MASTERMIND, GAME OF

METAFORTH, CORRECTIONS TO

MICRO ASSEMBLER, MICRO-SIZE

MODEM, TRANSFER SCREENS BY

MODEST PROPOSAL FOR DICTIONARY HEADERS
MORE FROM GEORGE (Pascal vs. Forth)
MUSIC GENERATION

NEW SYNTAX FOR DEFINING DEFINING WORDS
NOVA BUGS

OPTIMIZING DICTIONARY SEARCHES
PARAMETER PASSING TO DOES>

PASCAL VS. FORTH (MORE FROM GEORGE)
pDP-11, DTC VS. ITC

POEM

PROGRAMMING HINTS

PROJECT BENCHMARK

PROPOSED CASE STATEMENT

RECURSION AND ACKERMANN FUNCTION
RECURSION, EIGHT QUEENS PROBLEM
RECURSION, ROUNTABLE ON

REVERSE, GAME OF

ROUNDTABLE ON RECURSION

SEARCH

FORTH DIMENSIONS

11,89
I11,185
11,26
I11,113
I11,92
I11,158
111,41
111,126
111,162
1,49
1,54
III,54
11,121
111,172
111,57
I11,14
I,54
1,25
11,9
11,168
11,112
II1,50
111,89
I1,6
111,179
111,152
I11,179

11,165

Page 5

INDEX CONTINUED

USING 'ENCLOSE' ON 8080 111,41
USING FORTH FOR TRADEOFFS I,4
Between hardware/firmware/software

VARIABLE AND ARRAY, EXECUTION 11,109
VIEW OR NOT TO VIEW I1,162
W, RENAME 1,16
WHAT IS THE FORTH INTEREST GROUP? I,1
WORD SET, INPUT NUMBER 11,129
WORDS ABOUT WORDS III,141

INDIVIDUAL WORDS DEFINED

! I1,168
'*ASCII’ 111,72
Instead of EMIT
:CASE 11,41
'CASE', A GENERALIZED STRUCTURE 111,190
'CASE', BOCHERT/LION 11,50
'CASE', BRECHER I1,53
'CASE', BROTHERS 11,55
'CASE', EAKER I1,37
'CASE', EMERY 11,60
'CASE', FITTERY 11,62
'CASE', KATTENBERG 11,67
'CASE', LYONS I1,73
'CASE', MUNSON I1,41
'CASE', PERRY 11,78
'CASE', POWELL I1,81
'CASE', SELZER I1,82
'CASE', WILSON 11,85

FORTH DIMENSIONS

Page 7

WORDS CONTINUED

'"CASE', WITT/BUSLER 11,87
'CVD', CONVERT TO DECIMAL 111,142
'DO-CASE', ELVEY 11,57
'DO-CASE', GILES 11,64
'ENCLOSE', 6502 CORRECTION 111,170
'ENDWHILE' 111,72
'GODO', KITT PEAK 11,89
'SEARCH' 11,165
'TO' SOLUTION 1,38
'TO' SOLUTION CONTINUED 1,48
'VIEW' 11,164
*XEQ' 11,109

MISC. ENTRIES

-+ + + F 3+ 1+ -t -+ 2 £ 2 % 1 2

31, GAME OF 111,154
6502 'TINY' PSUEDO-CODE 11,7
6502, ASSEMBLER 111,143
6502, CORRECTIONS FOR 'ENCLOSE' 111,170
6800, LISTING, TREE DELETION 11,105
6809 IMPLEMENTATON NOTES 11,3
79 STANDARD 111,139
79 STANDARD - A TOOL BOX? 111,74
79 STANDARD, ‘FILL' 111,42
79 STANDARD, ‘'WORD' 111,73
79 STANDARD, CONTINUING DIALOG II1r,5
79 STANDARD, DO, LOOP, +LOOP 111,172
8080 ASSEMBLER 111,180
8080, FIG DISK COPYING 111,42

FORTH DIMENSIONS

Page 8

MISC. CONTINUED

8080, TIPS ON BRINGING UP I1I,40

9900 TRACE 111,173

FORTH DIMENSIONS Page 9

INDEX CONTINUED

SCREENS OF FORTH CODE

e e it e e R T T M m v e S e e A e e e e s e = = . vt v T m R D e m mm T e e s
E 2 i 2t 2 - - 2 R P R

ASSEMBLER FOR 6502 111,149
ASSEMBLER FOR 8080 111,180
BASIC COMPILER FOR FIG 111,177
'BATCH-COPY' 111,54
'BUILDS, 'DOES' 11,128
CASE AS A DEFINING WORD 111,189
CASE AUGMENTED 111,187
'CASE', BOCHERT/LION 11,52
'CASE', BRECHER 11,54
'CASE', BROTHERS 11,55
CASES CONTINUED 111,187
'CASE', EAKER I1,38
'CASE', EMERY 11,60
'*CASE', FITTERY 11,62
'*CASE', FORTH-85 I,50
'CASE', GENERALIZED STRUCTURE 111,190
'CASE', KATTENBERG 11,68
'CASE', MUNSON 11,48
'CASE', PERRY 11,78
CASE, SEL, AND COND 11,117
'CASE', SELZER 11,83
'CASE', WILSON 11,85
'CASE', WITT/BUSLER 11,87
DATA BASE ELEMENTS 111,45
DATA STRUCTURES 111,118
DECOMPILER FOR SYN-FORTH 111,61

SCREENS Page 10

SCREENS CONTINUED

DISK BUFFER DIAGNOSTICS 111,183
'"DO-CASE', ELVEY 11,57
'DO-CASE', GILES 11,66
EDITOR 111,84
EDITOR EXTENSIONS 11,157
EDITOR EXTENSIONS 11,161
EIGHT QUEENS PROBLEM 11,6
EXECUTION VARIABLE I1,111
"EXPECT' I11,7
with user defined backspace
FILE EDITOR 11,142
FILE NAMING SYSTEM 11,30
FORGIVING FORGET I1,155
FORTH LEARNS GERMAN 1,5
GAME OF 31 I11,154
GAME OF MASTERMIND 111,158
GAME OF REVERSE 111,152
GLOSSARY DOCUMENTATION 1,44
GLOSSARY GENERATOR I11,7
GRAPHICS (TEK 4010 SIMULATION) 111,156
GREATEST COMMON DIVISOR 11,167
HELP 1,19
HIGH SPEED DISK COPY 1,34
HUNT FOR CONTROL CHARS. 111,140
INPUT NUMBER WORDS 11,131
INTERRUPT HANDLER 111,117
JULIAN DATE 111,137
LOOP CONSTRUCT I1,26
SCREENS

Page 11

SCREENS CONTINUED

'MATCH' FOR EDITORS 11,177
MICRO ASSEMBLER 111,128
MODEM 111,162
MUSIC GENERATION III,54
OPTIMIZING DICTIONARY SEARCHES 111,57
PROJECT BENCHMARK I1,112
RANDOM NUMBER GENERATOR 11,34
'SEARCH' III1,10
for a string over a range of screens
SECTOR SKEWING FOR CP/M 111,182
SIEVE OF ERATOSTHENES 111,181
SOFTWARE TOOQOLS II1,10
STACK DIAGRAM PACKAGE 111,30
STACK INTO VARIABLES II1,185
STRING STACK I11,121
SYMBOL DICTIONARY 11,150
THEORY THAT JACK BUILT I1,9
*TO' SOLUTION 1,40
'TO' SOLUTION CONTINUED I,48
TOWERS OF HANOI 11,32
TRACE COLON WORDS 111,58
TRANSIENT DEFINITIONS 111,171
TREE DELETION IN FASL 11,103
TRS-80 FLOATING POINT II1,184
"VIEW' 111,11
using 'where'

Yoot 11,168
6502 ASSEMBLER 111,149
8080 ASSEMBLER 111,180

SCREENS Page 12

HONTH IMIESIONS

FORTH INTEREST GROUP Volume H
P.O. Box 1105 Number 1
San Carios, CA 94070 Price $2.00

st

1 General Information

l Publisher’'s Column

3 FORTH for the Motorola 6809

6 Recursion —
The Eight Queens Problem

7 A ‘TINY’ Pseudo-Code

9 FORTH in Literature
10 News & FIG Doings
12

New Products

15 Letters

FOSTH IMIENSIONS

Published by Farth Interest Group

Volume II No. 1 May/June 1980

Publisher Roy C. Martens

£ditorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris
John James
Gearge Maverick

FORTH DIMENSIONS solicits.editorial material, comments
and letters. NOo responsibility is assumed for accwracy
of material submitted. ALL MATERIAL PUBLISHED BY THE PORTH
;N'I‘EREST GROUP IS IN THE PUBLIC DOMAIN. Information
in FORTH DIMENSIONS may be reproduced with credit given to
the authar and the Forth Interest Group.

Subscr iption to FORTH DIMENSIONS is free with membership
in the PForth Interest Group at $12.00 per year ($15.00
overseas). For membership, change of address and/or to
submit material, the address is:

Farth Interest Group
P.0. Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charles H. Moore in 1969 at the
National Radic Astronomy Observatory, Charlottesville,
VA. It was created out of dissatisfaction with available
programming tools, especially for observatory automation.

Mr. Moore and several associates formed FORTH, Inc. in
1973 far the purpose of licensing and support of the PORTH
Operating System and Programming Language, and to supply
application programming to meet customers unique require-
ments.

The Parth Interest Group is centered in Northern Cali-
farnia, although our membership of 1100 is world-wide. It
was farmed in 1978 by FORTH programsers to encourage use of
the language by the interchange of ideas through seminars
and publications.

IMPORTANT DATES

Axil 26 FIG Monthly Meeting, 1:00 pm, at Liberty
House, Hayward, CA. Come to the PORML Work-
shop at 10:00 am and stay on.

May 20 National FIG Meeting, Disneyland Hotel,
Anaheim, CA at the NCC Personal Computing
Festival. Dinner in the evening and technical
sesgions all day. Contact: Jis Flownoy,
(408) 779-0848.

May 24 FIG Monthly Meeting, 1:00 pm, at Liberty
House, Hayward, CA, Come to the PORML Work~
shop at 10:00 am and stay on.

June 8-13 American Chemical Society

June 21 So. Cal. FIG Meeting, MSI Data Corp., 300
Fischer Ave., Costa Mesa, CA. Noon.

June 28 FIG Monthly Meeting, 1:00 pm, at Liberty

House, Hayward, CA. Came to the FORML Work-
shop at 10:00 am and stay on.

PUBLISHER'S COLUMN

Don't let your membership in FIG crash. Renew today!
It's easy. Just send in yow check for $12.00 ($15.00
overseas) and you'll be all set for the next six issues of
PORTH DIMENSIONS and the FIG notices. If you are in doubt
as to whether your membership is up, just look at the
address label. If it reads "Renew March 1980" then its
time to get that check off. Do it today.

The next issue of FORTH DIMENSIONS is going to be
super. It will be a technical issue with all the entries
submitted in the Case Contest. Make sure that you receive
this important issue, renew your membership in FIG today.

This may sound like a hard pitch for your membership but
FIG needs you. The only way that we can keep on publishing
PORTH DIMENSIONS and spreading the FORTH waxrd is by having
your suppart. In fact, how about getting others to sign
up.

Roy Maxrtens

KiM HARRIS COURSE

A five day intensive cowse on programming with PORTH
will be held July 21-25 at Humbolt State University in
Arcata, California. The course will cover the FORTH
approach to producing computer applications including: (1)
analyzing the requirements of a problem, (2) designing a
logical solution, and (3) implementing and testing the
solution. Topics will include the usage, extension, and
internals of the FORTH language, compiler, assembler,
virtual machine, multitasking operating system, mass storage
virtual memary manager, and file system. Computers will be
available for demonstrations and class exercises. The
course will be taught by Kim Barris, and Humbolt State
University will give 4 units of credit through the office of
Continuing Bducation. Tuition for the course is $112 per
student. The text will be "Using FORTH"; copies will be
available at the course for $25 each. Housing is available
in very nice dormitory rooms for $9 per person per night or
at several nearby motels. Cafeteria meals may be p\zchased
individually or at $10.25 per day. For more information
and registration materials write, before June 23:

Prof. Ronald Zammit
Physics Department
Humbolt State University
Accata, California 95521

Page 1

FORTH DIMENSIONS 11/1

FORML NEWS

FORML (FORTH Modification Laboratory) is a research
group cooxdinating individual efforts on the technical
evolution of FORTH. wWorkshop meetings are held the fourth
Saturday of each month at 10:00 a.m. at the Liberty House,
Hayward, CA. (Make a day of it by staying for the FIG
meeting in the afternoon.} Working groups determine
and document: the objectives (what problems need to be
solved), status of topic (what has already becn done),
the challenges (what has to be done), the methods (the
appropriate approach), the list (detailed topics and
problems), the specifications (requirements of valid
solutions). You can input directly to the technical
committees or to FIG Chairman Kim Harris (see Files DBMI).
The committees and leaders are:

Conmittee Leader

Numer ic Extensions &
Floating Point

LaFarr Stuart
P.O. Box 1418
Sunnyvale, CA 94088
(408) 296-62136

Committee

MetaFORTH - Nucleus

Conciurrency, Multitasking,
Executive Communication
Synchronization

Strings

Documentation

Graphics

Files DBMS

Leader

Armand Gambera

TTI Inc.

555 Del Rey Ave.
Sunnyvale, CA 94086
(408) 735-8080

Terry Holmes
808 Coleman, #21
Menlo Park, CA 94025

John Cassady

11 Miramonte Road
Orinda, CA 94563
(415) 254-2398

John S. James
P. O. Box 348
Berkeley, CA 94701
(415) 526-8815

Howard Pear lmutter
1055 Oregon Ave.
Palo Alto, CA 94303
(415) 856-0450

Kim Harris

1055 Oregon Ave.
Palo Alto, CA 94303
(415) 856-0450

FORML needs your help. Come to the next meeting!

THIS IS THE BEGINNING!
THE BEGINNING OF FIG TWO!
THE BEGINNING OF FORTH DIMENSIONS II!
IT'S TIME TO RENEW!

RENEW YOUR MEMBERSHIP IN FIG!
RENEW YOUR SUBSCRIPTION TO FORTH DIMENSIONS!
DO IT ALL FOR ONLY $12.00!

DO IT TODAY!

s EASY!

CHECK THE LABEL FOR RENEW DATE!

IF IT READS “Renew Mar. 1980” SEND A CHECK!

SEND IT TO: FIG, P.O. Box 1105, San Carlos, CA 94070 RENEW NOW!

FORTH DIMENSIONS 11/1 Page 2

FORTH, for the Motorola 6809

Raymond J. Talbot, Jr.
7209 Stella Link, Suite 112
Houston, Texas 77025

68'FORTH is an implementation of
fig-FORTH for the 6809 microprocessor.
It is available on 5" disk configured
for an SWTPC SS-50 Buss system with
SWIPC MF-68 dual 5" disks and the TSC
FLEX 9.0 disk operating system, but it
is easily modifiable for other systems
(write author for information).

The 6809 is a greatly improved
version of the Motorola 6800 8-bit
microprocessor., It is almost like
having a 16-bit microprocessor, since
there are several l6-bit instructions.
It has two 16-bit index registers X amd
Y, and a 1l6-bit accumulator register D
which may also be used as two 8-bit
registers A and B. There are many
addressing modes, including indirect,
autodecrement, and autoincrement.

The two hardware stack registers
make it ideal for FORTH — it is almost
a FORTH machine in silicon. I have
implemented FORTH by the following
register assignments:

The FORTH variable

stack — U stack register

The FORTH return

stack -~ 5§ stack register
The FORTH in-

struction

pointer (IP) -— Y index register

The FORTH register W (which points
to the machine code being exe-
cuted) is never stored (to save
an instruction which is usually
unnecessary), however, upon
entry to a word's machine code,
that address is in the -- X
index register

Inside a word, one may use X and
D without bothering to save their
values on entry. If one wants a second
index register (very handy for zome-
thing like (MOVE), then one or nmore of
Y, S, or U registers may be saved in
memory (or on one of the stacks).

Before listing the ocode which makes
the FORTH machine, let me describe the
notation used to make dictionary
entries with the TSC assembler MACRO
facility:

LASTNM SET o] 1nitialize last nare oddvus U e
2070; this will mars teqinming
of dictionary
WORDM MACRO macro called WORDM *o make entry
NEXTNM SET sets NMEXTNM equal %o present location
which will e first vte of name
IFC b4, IMMEDIATE conditional omprlation for [METIATE
wox 35
FCB slesSCy first oyre iv . O har, with sign
and 1mmed. hit
ELSE
FCB sleSbg no 1mmed. bit
ENDIF
IPNC 61,1 special case of a i -haracter wxd
wiil skip this
e 82/
ENDIF
3] $8g+'s] last character has Sign bit et
FOB LASTNA link to previous waxd 1n dict
LASTNM SET NEXTNM reset LASTNM to point to this word
ENDM erd of maaxo

A-10

The &n quantities refer to parameter
to the MACRO. E.gq.,

MACRO 4,BAS,E
will assemble as

84 42 41 53 C5 LI NK
Where LI NK is the link address to the
previous entry. This macro coupled
with assembly of addresses allows one
to write assembly language code that is
essentially just colon definitions,
e.g., the macro definition of COLON
itself below.

- Here 1is the assembly language
listing for the portion of the code
which defines the 6809 FORTH machine:

WORDM 1,,:, IMMEDIATE
COLON FoB DOCOL, QEXEC, SCSP, CURRENT, AT, CONTXT, STORE
FOB CREATE, RBRAK, PSCODE
oooL PSHS Y push IP = Y to ret stack = 5
LEAY 2,x increment Y o first parametec afteéx
CFA inW =X
NEXT LDX R get W into X and then increment IP » Y
to point to next lnatruction
NEXTP JP {.X) jurp indirect to code pointed to by
WX
WORDM 2,;,8
SEnIS FoB 2
PSEMIS Y S reset IP = Y to next address (found

by popping from the ret stack = S).

Page 3

FORTH DIMENSIONS I1/1

Some arbitrarily chosen examples of
the great economy achieved by this use
of the stack registers is given by some
words shown here (note: depending on
location, some of the BRA have to be
the long branch instruction LBRA).

7, EXECUT,E
2

WORIM
ExXBC B
e X pul!l address fram var. stack = U
and put Into W = X -- one of
very few cases requiring W
BRA NEXTP
WORDM 1,.¢
LS Fo8 el
PULL o] qet wop item from stack 1nto D
accumulatar, add second item,
now top Nf stack
ADOO W
RITO ST BN stoxre sum back on stack
BRA NEXT
WORDM 2.1,
ONEP e 2
wo L get top item into D
ADOO [N add 1
BRA AUTD put back onte D
WORIM 1.0
AT FOB 2
Loo Ul get ¢ pointed to by add. on stack
BRA AUTD replace top of stack with ¢
WORDM 1.
STORE 30] 2
PULY X,D gets top 1nto D, second into X
[» X, D exchange
ST X store second 1nto lacation pointed
t by top
BRA NEXT
WOROM 2,.R
TOR o8 *e2
PO ° Pull top item from vax. stack
PSHS D push onto ret. sack
BRA NEXT

A-12

These various fragments of 6809
code can be compared with the cor-
responding 6800 code in the FIG 6800
ASSEMBLY SOURCE LISTING. Specifically,
the 6809 NEXT routine takes 14 machine
cycles whereas the 6800 NEXT routine
takes 38 cycles.

The 68'FORTH implementation for the
6809 is essentially identical with the
6800 fig version except for the machine
code for the words defined that way.
Many words which are coded (like PLUS)
are shorter in 6809 code because of
the 16-bit math. For all of the
colon-definition-like-words in 6800
fig-FORTH, I just used my WORDM MACRO;
that keeps the source file short.

68'FORTH implements the full
fig-FORTH vocabulary as given by the
May 1979 6800 ASSEMBLY SOURCE LISTING
and the fig-FORTH Installation manual.
In addition, particular installation
dependent code for EMIT, KEY, and disk
read and write are given for a 6809
system with all disk I/O being done
via the disk sector read/write routines
of the TSC FLEX 9.0 disk operating
system. FLEX formatted text files may

be read or written in lieu of the
terminal. (The word READ switches KEY
to read a text file, similarly WRITE
switches EMIT to write a text file).
Consequently, it is possible to com-
municate data between FORTH and other
FLEX programs (Horrors - BASIC even!!),

Another feature of 68' FORTH is
something which should be part of any
FORTH system which operates under a
host DOS — It has a word (underscore
on some terminals, left arrow on
others) which is followed by a text
string (delimited by carriage return or
double quote). The text string is
passed to the DOS command processor.
While in 68'FORTH one can do any FLEX
command, e.g., CAT (catalog of FLEX
files), DELETE, RENAME, etc., by,
e.g.

__CAT 1.F (carriage return)

to get a catalog of all files on drive
1 with name starting with F. This type
of facility is extremely useful for the
exchange of data with other types of
programs and for using FORTH in time-~
sharing systems where other people use
other languages. For example, at Rice
we operate a PDP-11/55 with the UNIX
operating system and FORTH functions as
just one time-shared process along with
many others. As yet owr PDP-11 FORTH
does not have this word, but I plan
to include it in order to take advan-
tage of the many extremely useful
utility programs which exist in UNIX.
In particular, in that environment, we
want to be able to transfer data
between tapes and disks as background
jobs while we are working with files
interactively with FORTH. Also, for
number crunching work, other languages
are more convenient and faster than
FORTH, so we plan to implement certain
tasks in other languages to be done as
background jobs supervised by UNIX
while we use FORTH for just those
interactive tasks for which it is
ideal.

My main reason for pointing out
these FORTH oconnections to another DOS

FORTH DIMENSIONS II/1

Page 4

is to encourage the FORTH standards
team to think about standard vocabulary
words for these links, FORTH grew up
and still largely exists as a stand
alone operating system. However ,
already it is used in some places as
simply one language in a multi-language
time shared system. I know of two
places —— here at Rice where we have
begun a rudimentary connection between
FORTH and UNIX, and at Kitt Peak
National Observatory where their CDC
6400 has very elaborate inconnections
between FORTH and CDC's SCOPE.

Editors Note -- This is an excellent
example of conversion of a FIG assembly
listing to another processor. However
one more change is in order. NEXT on
the 6809 is only 4 bytes long and the
code jump to NEXT takes 3 bytes. On
processors this powerful, the code for
NEXT is repeated, in-~line, wherever
needed. This costs one byte but saves
3 clock cycles on each interpretive
cycle. The time overhead of indirect
threaded code is then 12 cycles.
Similarly, PUTD should be expanded in
line.

Page 5

IONS I

Recursion —
The Eight Queens Problem

Jerry LeVan
Dept. of Math Science
Eastern Kentucky University
Richmond, KY 40475

The Eight Queens problem has been
often used as a textbook problem in
programming, particularly to illustrate
recusion. I present here a solution in
FORTH.

Recusion is the technique of
allowing a procedure (a FORTH word
definition) to call itself. This
is normally blocked during FORTH
compilation, to allow a old word name
to be used in a new definition of the
same name. For example:

: HELP CR CR HELP CR CR ;

The new definition of HELP will
execute a previous definition, but
with two carriage returns before and
after. This is a necessary and common
capability.

How then to have a word call itself,
if not by name? The answer is MYSELF.
This word will compile a call to the
word in which it is located:

DEMO

IF MYSELF EISE — THEN ;

In this example, if the test is
true at IF, at MYSELF a call to DEMO
will occur. This is accomplished by
defining MYSELF as IMMEDIATE. At
compile time, MYSELF executes and
compiles the execution (code field)
address of the most recent (actually
incomplete) definition in the CURRENT
vocabulary. The fig-FORTH definition
is:

: MYSELF
LATEST PFA CFA , : IMMEDIATE

The Four Queen Problem at hand finds
the board row and colum locations on
which eight chess queens would be safe
from mutual attack. This example
doesn't check for board rotations or
reflections, so more answers are
printed than necessary.

The output gives the calculation
number on which the answer was found
and a list of the eight row numbers,
colum by colum on which the queens
are located. Now it's your turn to
DO-IT.

$ 3

- -~

7
8 queens by Jerry LeVan WIFR-79DECO2)
-

CR

[

1 2 DUP + ; (double & value)

2

3 : MYSELF (allow & word to call tteelf, by recursfon)
4 LATEST PFA CFA , ;| IMMEDIATE

5

& : TARRAY (makes sn array of 1’s, as given by input)
7 <BUILDS O DO 1 , LOOP

8 DOES> SWAP 2* + . (leave address within array)
9

10 8 LARRAY A (these form workspace for the solutions)
11 16 IARRAY B

12 16 IARRAY C

13 8 IARRAY X (chis contains trial solutions)

14 ==>

15
SCR # 38

0 (wore 8 queens WFR-79DECO2)
1 : SAre

2 SWAP OVER OVER OVER OVER

3 -1 + C @

L] + b & R

5" DROP A & R> R> * o

6 : MARK

? SWAP OVER OVER OVER OVER

] - 7 + C 0 SwAP !

9 + B 0 suAr

10 DROP A O SWAP I

11 : UMMARK

12 SUAP OVER OVER OVER OVER

13 - 7 + C | SWAP !

14 + B) SuAr |

15 DROF A | SUAP ! -—>
sc # 59

0 (more § queens WFR-79DBCO2)
1 O VARIABLE TRIES

2 : PRINTSOL (print ose solutiom)

3 " found on try " TRIES @ S .R 8 O

4 DO I X @ 1+ S .k LOOP CR ;

5 TRY L (search for answers)

6 DO 1 TRIES 41 ITERMINAL IF QUIT THEN DUP 1 SAFE
? IF DUP I MARK

[] DUP I Svwar Xx !

9 P 7 <

10 IF DUP 1+ ISTACK MYSELF KELSE PRINTSOL THEM
11 DUP 1 UWMARK

12 THEN

13 Loor DROP
14

1S : DO-IT OTRIES ! O CR TRY ; { This rums the problem)

FORTH DIMENSIONS II/1

Page 6

A ‘TINY’ Pseudo-Code

Bill Powell
Sawbridgeworth, Herts
England

There are some interesting speed/
memory trade-offs which depend on the
pseudo-code adopted in implementing
FORTH. The discussion by David Sirag
(1] for the PDP-11 shows DIC to be both
faster and more compact, but less
flexible (?) than ITC which 1is the
de facto standard. But 6502 FORTH
(Programma Consultants) appears to use
the JSR/RTS structure. This 1is
faster, but must lead to a lot of code
since it now takes 3 instead of 2 bytes
to reference each low level (CODE)
routine in a high level (COLON)
definition.

On my 6502, an 8 bit machine, it
seems attractive to call the most
frequently used FORTH words with a
single byte. My 'TINY' code reads the
first byte and then shifts it left to
write bits 6 and 7 into the sign and
carry flags. For codes $80 thru S$FF
(carry set) a branch is taken to a 2
byte COLON instruction. The even value
we now have is used for the Lo byte for
the Instruction Counter (IC). The Hi
byte is read by the original IC before
being saved on the return stack. This
is still a two byte p~code which allows
us a vast number of Colon definitions.
But we no longer need the Code Address,
saving 2 bytes. But we must start
these entries at even addresses which
will cost 1/2 byte on average.

Next the sign bit is tested. If
clear, a branch is taken to a routine
for low Literals which pushes the
numbers 0 thru $3F on the stack. Then
this routine drops back into the 'TINY'
interpreter. These low literals (0-63)
thus compile into fast single byte
p-codes. Frequently used Variables can
be stored at these memory addresses
making this doubly useful, e.g., User
Variables.

For codes $40 thru $7F the above
branches fail and we drop into a

nucleus QODE routine. This is done by
a look-up table which costs two bytes
per entry just as the Code Address
normally does. We can support up to
64 CODE routines this way. Despite
the time taken for bit testing this
structure works out quite fast because
only one byte has to be fetched. Of
course we could arrange for more than
64 QODE entries by defining one that
gives acoess to a three byte structure,
but 64 should be enough.

The effect of these one byte
instructions is to make the body of
COLON definitions much smaller.
Literals require 1, 2 or 3 bytes
instead of 2, 3 or 4 bytes. On the
other hand OONSTANTS and VARIABLES will
usually reguire 3 instead of 2 bytes
since in TINY they are compiled
like Literals. But these words are
infrequent in FORTH because parameters
are passed on the stack.

TNy JSR/XTS orC m
1. ooDE cycles 21 12 X; ‘5
d.bytes S 1
(NEXT) p.xn 1 3 2 2
2% 5" cycles 100 24 i 105
d.bytes 1-1/72 1 5 4
p-bytes 2 3 2 2
3. Storage cycles X w 48 ? to 58 7t 8 7 to 63
e.9. d.bytes 1 3 3 2
CONSTANT p.bytes 1w 3 3 2 2
4. Literals les 30 to 48 ?to % 49 to 4 72t &8
;’.ﬁmz 1w) 1w S 2w 4 2w 4
S. A Line cycles 30 146 84 40
1o level p.bytes 14 » n 3
6. A Line cycles *e00)237 1056 1412 159)s00e
Hi level p.bytes 17 2 % 2
7. Program d.bytes -3 155 465 435
sc;q:w p.bytes 930 17% 1440 1300
wtal.bytes 0001215 1895 1905 1035000
Table compecing p-codes: d.bytes = dictionary overhead

p.bytes = length of p-oude roquired

17

Page 7

FORTH DIMENSIONS I

The table above analyses three forms
of overhead:

1. Time overhead in cycles

2. Dictionary building

overhead d.bytes
3 P-code required each

time the entry is

called p.bytes

Sections 1, 2 and 3 analyse FORTH
words of type CODE, COLON, CONSTANT,
and Section 4 analyses Literals.

In Section 5 we find the time ower
head to execute a line assumed to
contain 6 CODE, 1 Literal, and 2
Storage (CONSTANT) words, as well as
the space for its p-code. Some of the
numerals have been assumed low.

Section 6 is like Section 5 except
that 3 of the CODE words have been
replaced by 3 COLON words of the type
in Section 5. At this level we can get
a good idea of comparative speeds of
execution.

Section 7 gives the storage required
for a program of 35 CODE, 20 storage,
and 60 COLON words (drawing equally
from Sections 5 and 6). This does not
include the space for actual data nor
for the machine code of the nucleus,
but does include all p-code and
dictionary overheads apart from the
headers.

Taking ITC as 100% we see that the
per formance becomes:
TINY JSR/RTS DIC

Time Overhead 78% 66% 89%
Space Required 66% 103% 104%

The benchmarks are for the 6502, but
similar ranking seems likely for other
8 bit micros. Clearly, longer programs
will favor TINY even more. On the
other hand JSR/RTS may execute even
faster than indicated because the
nucleus can make freer use of the cpu
registers.

An important aspect of FORTH is the
access it gives the user to the struc-
ture of the language. Therefore 1
would still like to see ITC remain the
preferred form because of its elegence
and flexibility. But TINY has much to
offer on small 8 bit systems.

(1] Sirag, D: "DIC v/s ITC for FORTH"
FORTH DIMENSIONS Vol. 1, No. 3, Oct./
Nov. 1978

RENEW NOW!

RENEW NOW!

RENEW NOW!

FORTH DIMENSIONS 11/1

FORTH in Literature

At the FORTH Convention, October,
1979, Dan Slater gave a short report on
an experiment on communication with
killer whales. By use of a touch
sensitive plate, the orca could learn
to physically equate touching a posi-
tion with a concept or object.
Interest was expressed in using the
syntax of FORTH to define new items.
By this method a man/whale vocabulary
can be built.

The evening Charles Moore read a
FORTH poem by Ned Conklin. It is
loosely based on a classic of English
literature.

SONG
SIXPENCE !

BEGIN RYE @ POCKET +! ?FULL END

24 0 DO BLACKBIRD I + @ PIE +! LOOP
BAKE BEGIN ?20PENED END

SING DAINTY-DISK KING ! SURPRISE ;

A-21

Bill Ragsdale has submitted two
more. This is a familiar quotation,
with apologies to Browning:

: LOVE
CR ." How do 1 love thee?"
CR ." Let me ocount the ways."
1 BEGIN CR DUP . 1+ AGAIN

RHYME
JACK DUP NIMBLE BE

DUP QUICK BE
CANDLE-STICK OVER JUMP ;

Finally here is an actual, full
poem. It is taken from "The Space
Childs Mother Goose" by Frederick
Winsor, Simon and Schuster, 1958. It
consists of eleven stanzas and is
almost recursive.

The first two screens compile
the primitives from which the poem
is recited, by loading of the last
screen. The computer's recitation
occurs stanza by stanza with the

operator indicating his interest and
approval by operating any terminal key
at the REST after each stanza.

SCR # 108
0 (The Theory that Jeck built MFR=-9DECLS)
1| (Fros The Space Child’s Mother Goose, Fredertck Winsor)

2 : RECITE 110 LOAD QUIT ; (say this poes)
3 : THE M the *
4 3 THAT cr * That " 3
5 : TH1S [+ 3 " This {0 " THE :
6 : JACK . Jack buile”
7 : SUMMARY ™ Susmary”
8 : FLAW " Flav"
9 : MUMMERY " uamery” ;
10 : K " Constant K"
11 : MAZE +" Zrudite Verbal Haze™ ;
12 : PHRASE " Turn of e Plausible Phrase” ;
13 : sLurr ." Chaotic Confusion and Bluff" ;
14 : stTury " Cybernetics and Stuff”
15 : THEORY " Theory " JACK ; -=>
sCr 4 109
0 (More Poem WrR-79DEC1S)
1 : BUTTOM +* Button to Start the Machine”
2 ¢ CRILD ™ Space Child with Brov Serene” ;
3 : CYBERNETICS " Cybernetics and Stuff” ;
4 : HIDING CR ." Riding " THE FLAW ;
5 : LAY THAT .” lay in " THE THEORY ;
6 : BASED [« 3 " Based on ¥ THE WINMERY ;
7 : SAVED THAT ." saved " THE SOMMARY ;
8 : CLOAK CR ." Cloaking " Kk
9 : THICK IF THAT ELSE CR ." And " THEN ." Thickened " THE MAZE ;

10 : HUNG THAT ."” hung on " THE PHRASE :

11 : COVER IF THAT ." covered " ELSE CR ." To cover " THEN BLUPY ;

12 : MAKE CR .% To make with " THE CYBRRMETICS ;
13 : PUSHED CR ." Who pushed ™ BUTTON ;
14 : REST 46 EMIT 10 SPACES KEY DROP CR Ch Ck ;

P
1S : WITHOUT CR .* Without Confusion, exposing the Bluff™ ; RECITE

Recite our poem WPR-9DECLS)
CR CRh THIS THEORY REST

IS PLAW LAY REST

3 THIS MUMNERY NIDING LAY REST

4 THIS SUMMARY BASED HIDING LAY REST

K SAVED BASED HIDING LAY REST

6 THIS WAZE CLOAK SAVED BASED HIDING LAY REST

7 TRIS PMRASE 1 TMICK CLOAX SAVED BASED HIDING LAY REST

8 TNIS BLUPY WUNG | THICK CLOAK SAVED BASED WIDING LAY REST

9 THIS STUFF | COVER HUNG O THICK CLOAK SAVED BASED RIDING

10 LAY REST

11 THIS BUTTON MAKE O COVER HUMG O THICK CLOAK SAVED

12 SASED KIDING LAY REST

I3 THIS CHILD PUSMED CR ." That made vith ™ CYBERNETICS WITHOUT

14 NUMG CR ." And, shradding " THE MAZE CLOAK CR ." Wrecked " THE

15 SUMMARY BASED HIDING CR .“ And Demolished " TNEORY REST

Page 9

FORTH DIMERSIOS 11/1

FORTH, Inc. News

A series of free seminars and paid
($100-125) workshops is being offered;
pPolyFORTH will be presented. The
schedule is: Palo Alto, May 8 & 9;
Rochester, NY, May 13; Boston, May 14 &
15; New York, June 10; Cherry Hill,
June 11; Washington-Baltimore, June 12
& 13; Houston, June 16 & 17; New York,
June 18; Palo Alto, June 24 & 25.
For more information and/cxr to regis-
ter: Call Kris at FORTH, Inc. (213)
372-8493.

FIG DOINGS

Intensive Short Course

The American Chemical Society is
offering a number of five day, hands-
on, in-depth lab courses on micro-
processors and minicomputers. The
participants will have access to a
PDP-1]1 network running FORTH. Sessions
are June 8-13, September 7-12 and
December 14-19 at VPI, Blacksburg,
VI at a cost of $485 for ACS members
and $550 for non~-members. For more
information contact ACS Short Courses,
1155 Sixteenth St., N.W., Washington,
DC 20036.

FIG GROUPS FORMED OR FORMING

Call Guy Kelly (714)
268-3100 ext 4784 or Tom
Boyle (714) 571-7711

San Diego -

Seattle - Call Dwight Vandenburg
(206) 542-8370 or Terry

Dettman (206) 821-5832

Third Wednesday at 7:00
pm in Cochituate, MA.
Call Dick Miller (617)
653-6136

Mass. -

Virginia Call Joel Shprentz (703)
437-9218 or Paul van der
Eijk (703) 354-7443
In Houston, call Jeff
Lewis (713) 729—3320,
in Dallas, call John
Earls (214) 661-2928 and
in Denton, call Dean
Vieau (313) 493-5105
Arizona - Call Dick Wilson (602)
277-6611 ext. 3257

Call Ed Kammerer (503)
644-2688

Qregon -

New York - Write Tom Jung, 704
l66th St., Whitestone,
NY

Michigan - Call Dwayne Gustaus
(817) 387-6976

OTHER PUBLICATIONS

Dick Miller has sent the first issue
of the MMS FORTH Newsletter. 1It's jam
packed with news, tips and updates for
MMS FORTH users on the TRS~-80.

It's a service to registered owners,
and Dick would be glad to send a sample
copy to prospective users. Write
Miller Microcomputer Services, 61 Lake
Shore Road, Natick, MA 091760.

® * *

Thanks to Fig member Frank Dougherty
(325 Beacon Street, Belvedere, IL
61008) for the writeup in the Blackhawk
Bit Burners Newsletter. Frank dis-
cussed the language and our efforts, as
well as the dialect STOIC.

FORTH for Microcomputers by John S.
James originally published in Dr
Dobbs Number 25 May 1978 has been
reprinted first in ACM SIGPLAN NOTICES,
Oct. 1978 and now in an IEEE Tutorial:
MICROCOMPUTER PROGRAMMING AND SOFTWARE

FORTH DIMENSIONS II/1

Page 10

SUPPORT, IMSONG LEE, EDITOR, IEE cat
No. EHO 140-4 to quote from this
publication "James gives a compact, but
not necessarily easy, introduction to a
stack oriented, interactive programming
language called FORTH. A better
tutorial presentation may be found in
the manual, PROGRAM FORTH, A PRIMER, by
Gregg Howe, Steward Observatory,
University of Arizona, 1973." The
current availability of this document
is unknown.

More on STOIC-II

Technical Report TR-001

"EDIT79, A STOIC-I1 Programming
Example" (63 pages) $7.00

This report represents and example
of a non-trivial program written
entirely in STOIC-II. The program,
a text editor, was cross-compiled to
produce a stand-alone object program,
thus facilitating benchmark comparisons
with the CP/M editor which it closely
resembles. Included in the report are
the benchmark results, a brief user's
guide, and source code for the editor
along with extensive comments.

Contact: Jeff Zurkow
Avocet Systems
804 South State Street
Dover, DE 19901

KIM HARRIS COURSE

A five day intensive course on
programming with FORTH will be held
July 21-25 at Humbolt State University
in Arcata, California. The course will
cover the FORTH approach to producing
computer applications including: (1)
analyzing the requirements of a prob-
lem, (2) designing a logical solution,

solution. Topics will include the
usage, extension, and internals of the
FORTH language, compiler, assembler,
virtual machine, multitasking operating
system, mass storage virtual memory
manager, and file system. Camputers
will be available for demonstrations
and class exercises. The course will
be taught by Kim Harris, and Humbolt
State University will give 4 units of
aedit through the office of Continuing
Education. Tuition for the course is
$112 per student. The text will be
"Using FORTH"; copies will be available
at the course for $25 each. Housing is
available in very nice dormitory rooms
for $9 per person per night or at
several nearby motels. Cafeteria meals
may be purchased individually or at
$10.25 per day. For more information
and registration materials write,
before June 23:

Prof. Ronald Zammit
Physics Depar tment
Humbolt State University
Arcata, California 95521

RENEW NOW!

Page 11

FORTH DIMENSIONS 11/1

tiny~-FORTH

A version of fig-FORTH tailored to
the TRS-80, Level II with 16K bytes of
memory minimum. I/O devices supported
are: keyboard, display and cassette
tape recorder. New words can be
defined to control other devices. The
editor is identical to the fig-FORTH
editor and the output format is modi-
fied slightly to fit the TRS-80
display. Documentation includes:
introduction, editor, graphics,
assembler, advanced tiny-FORTH and
applications. The style is tutorial
with hundreds of examples that teach
tiny-FORTH in a hands-on mode. $29.95
for tiny-FORTH cassette and full
documentation for the Level II, 16K
TRS-80 plus $1.50 for shipping and
handling ($5.00 outside the US). The
Software Farm, P.0. Box 2304, Reston,
VA 22090,

NEW PRODUCTS

KIM-1 FORTH

This version was written from the
FIG model by Ralph Deane of Vancouver,
Canada. It contains a complete
programming system which has an inter-
preter /compiler as well as an assembler
and editor. All terminal 1/0 is
funnelled through a jump table near the
beginning of the software and can
easily be changed to jump to user-
written I/0 drivers. 6502 FORTH
resides in 8K of RAM starting at $2000
and can operate with as little as 4K of
additional contiguous RAM. $94.00 for
6502 FORTH system on KIM cassette.
$16.50 for 6502 FORTH user manual.
Eric C. Rehnke, 540 S. Ranch View
Circle, #61, Anaheim Hills, CA 92087.

Heath H89 and H8

FORTH for the Beath 89 and 8 is
possible with the £fig-FORTH 8080,
Version 1.1 (as demonstrated by Jim
Flowwrnoy at the January FIG meeting).
Walter Harris implemented and brought
up the code on his dual disc H8 and
reassembled it for the H89. For more
information, contact: FORTH Power, P.O.
Box 2455, San Rafael, CA 94902.

HONEYWELL FORTH SYSTEM

Source Data Systems announces a
language for non-programmer data
definition, transaction definition,
file definition and report generation
for Honeywell lLevel 6 Minis. Designed
for information management and retre-
vial when used together is SDS's Source
Data Entry package. For more informa-
tion, contact: Source Data Systems, 208
2nd Avenue, S.E., Cedar Rapids, IA
52406.

AMD 2901 FORTH PROCESSOR

Functional Automation unleashes the
I/0 thing, a FORTH based front end
processor for its AMD 2901 based 64 bit
wide microprogrammed computing engine.
The system programming language is FASL
(Functional Automation System Language)
which is available users. For more
information, contact: Functional
Automation Inc., 3 Graham Drive,
Nashua, NH 03060.

STOIC

STOIC, essentially an extension of
FORTH, is a general purpose interactive

FORTH DIMENSIONS 11/1

Page 12

program, assembler, debugger, loader
and operating system within a single
consistant architecture. With core
efficiency and high running speeds,
the langquage is extremely flexible
permitting the user to develop a
working vocabulary of subroutines
tailored to specific applications.

The entire package, including a
library of predefined subroutines,
is copyrighted but available to
educational users. STOIC requires
three discs, two are STOIC itself and
the third contains a bootstrap that
permits the entry of STOIC through CPM
and the continued use of CP/M disc I/0
under STOIC. For more information,
contact: Steven Burns, Massachusetts
Institute of Technology, Room 20-119,
Cambxr idge, MA 02139.

68 'FORTH FOR 6809

68'FORTH is a 6809 implementation
of the FORTH Interest Group standard
vocabulary of this powerful langquage.

68 'FORTH consists of full FORTH
Interest Group standard (May 1979)
vocabulary with names to 31 characters,
16 and 32 bit integer math, compiler
error checking, and source text
editor. System is supplied with
additional vocabulary to simulate disk
in memory (useful for modifying to work
with other disk systems or enabling
cassette-only operation), to use disk
for virtual memory (allows large data
sets to be used in small memory), to
interface with FLEX 9.0 text files for
input and output, and to perform
standard FORTH disk block read and
write, System is supplied on 5" floppy
disk configqured for SWTPC MF-68.
Minimum memory requirement is 8k for
FLEX plus 12K of user space. Docu-
mentation contains description of all
vocabulary words, information on
configuring for individual systenm,

and basic tutorial for FORTH language.
Information is available for recon-
figuring to interface witn other disk
operatings systems.

FLEX 9.0 format 5" disk plus
documentation: $39.95.

Talbot Microsystems
7209 Stella Link, Suite 112
Houston, TX 77025

PRODUCT RELEASE

8080 Assembler Available

John Cassady, who did the original
fig~-FORTH 8080 listing, has now re-
leased an 8080 FORTH assembler. John's
assembler handled all Intel nmemonics
and can easily be altered to Zilog, as
it is published as source code. It
handles structured assembly condi-
tionals IF, ELSE, THEN, BEGIN, UNTIL,
WHILE, and REPEAT. It is integrated
with the FIG security package to verify
ocorrect structuring of conditionals,
during assembly. John provides for
named subroutines as well as CODE
definitions.

Send $3.25 (includes postage) to

John Cassady, 339 15th Street, Oakland,
CA 94612.

PolyFORTH-CP/M

polyFORTH-CP/M is FORTH Inc.'s
polyFORTH, interfaced to run on nearly
any 32k or larger CP/M based system.
When loaded, polyFORTH-CP/M finds and
links-up to the CP/M I/0 drivers,
initializes itself, and responds "up"
on the system console. At this point,

_true polyFORTH is running, that is,

FORTH structured (screen oriented)
diskettes must be used. It is impor-
tant to realize that polyFORTH-CP/M
does not run under CP/M, it runs in
place of CP/M, utilizing only the CP/M
1/0 drivers.

Page 13

FORTH DIMENSIONS II/1

The polyFORTH-CP/M system, as
supplied by M&B DESIGN, is a value-
added system. FORTH Inc.'s complete
8080 polyFORTH system is supplied, plus
an additional diskette and manual
containing interface material. Also
provided, is a CP/M utility that allows
transferring polyFORTH blocks (screens)
to a CPM file, and transferring a CPM
file to polyFORTH blocks. Source is
supplied for the entire polyFORTH
system, the polyFORTH-CP/M components,
and the transfer utility.

polyFORTH-CP/M is available directly
from M&B DESIGN for $4,000 on a wide
variety of diskette formats. Contact:

M&B DESIGN

820 Sweetbay Dr.
Sunnyvale, CA 94086
(408) 243-0834

FORTH for Poly-88

fig-FORTH for the 8080 as imple-
mented by John Cassady and modified by
Kim Harris is now available for the
Poly-88.

This version uses cassette and
ram simulation of disc, and includes
full use of upper and lower case
characters as well as the Greek
character set, as well as high speed
graphics. An editor and an assembler
are included.

The complete

system price is $50.00

FORTH on cassette
(needs 8K RAM
2000-40005) o o o o 0 o o o 25-00

Poly-88 Forth
Uw 'S Gui& L] L L] . L d . L] 10 L] w

8080 fig-FORTH
Source Listing 10.00

Installation Manual
(F.I‘G. ml) L) . - * » L] 10.00

(CA residents add 6% tax)
Write: Jeff Fox

2223 Byron
Berkeley, CA 94702

(415) 843-0385

LOTS OF FORTH

ANCON provides a wide variety of
PORTH products, including: Hobby
versions; TRS-80 Cassette, $29.95;
Heath H8-H89, $49.94; 8080 CP/M 8in,
$49.95; 6809 5" Flex, $49.94.

Personel systems; TRS-80 Tape,
$45.95; Disc, $65.95; 8080 Cp/M 8"
$125.00; pdp-11, $140.00; Northstar,
Micropolis.

Commercial/Industrial/Scientific
versions available for specific
requirements. Jim Flournoy, ANCON,
17370 Hawkins Lane, Morgan Hill, CA
95037, (408) 779-0848.

RENEW NOW!

FORTH DIMENSIONS I1i/1

Page 14

LYON'S DEN

(Editors note — George Lyons has
cor-esponded on FORTH topics over the
full life of FORTH DIMENSIONS. He
addresses technical and philosophical
topics. We're formalizing his con-
tributions into a bylined column.
Welcome to the Lyon's Den.]

I suspect that a paramount issue
in decisions on whether to use FORTH or
another language 1s a tradeoff between
language convenience and compiler
oonvenience. By implementing a complex
syntax a PASCAL compiler, say, auto-
mates part of the programming task at
the expense of a time-consuming source
entry and processing operation.
Standard FORTH seems to be at the other
extreme, leaving more explicit details
to be coded by the programmer, for the
gain of easier processing with an
interactive resident compiler.

The polarization of FORTH and its
alternatives on this scale may only be
due to the absence of standard FORTH
vocabularies to provide the same degree
of automation traditional languages
supply. I wonder if a quantum jump in
FORTH's popularity would result from
supplying compilers for traditional
lanquages implemented in FORTH.
Possibly, transparently obvious FORTH
lanquage features could be provided
achieving the same results. The areas
where the qgreatest impact might come
are PASCAL data structures, ALGOL
procedure argument passing and dynamic
local storage allocation, and APL
matrix algetra.

If techniques for these operations
in FORTH were widely known no one would
make the mistake of referring to FORTH
as a species of macro assembler. By
demonstrating that traditional language
convenience is available in FORTH users
might be motivated to take advantage of
the extensibility of FORTH to go beyond

LETTERS

the limitations of the traditional
approaches.

March 14, 1970
George B. Lyons

280 Henderson Street
Jersey City, N.J. 07302

Programma was nice enough to supply
me with a reassembled version of their
Apple-FORTH Kernel plus screens of the
dictionary entries for my KIM-1. This
was all entered by hand, painfully
debugged, editor programs written (in
their FORTH), etc. I then tried to
duplicate the "PI" routine in the Ir.
Dobbs Journal, only to find that
Programma didn't carry extra bits of
intermediate accuracy in the multiply
routine. Then another week of spare
time (midnight oil) work to rewrite the
math routines to allow "*/MOD" to work
properly. It finally worked.

I'm not bitter though. Through all
of this I learned enough of FORTH-like
programming to be more enthusiastic
than ever, but disappointed that the
example programs I've received from
you are not usable by the Programma
version. I am therefore eagerly
awaiting the availability of the 6502
version of fig-FORTH for my KIM-1l.

Edward J. Bechtel, M.D,
Newport Beach, CA

Should you have any books, manuals
or other documents pertaining to FORTH
which are available by special order, I
would like to have a list. There seems
to be a real need for textbooks or
tutorials which will carry a user fram
the most simple FORTH constructions to
the very elaboarate ones like <BUILDS
and DOES>. (See #1 below.)

Page 15

FORTH DIMENSIONS II/1

For your information, I am working
with the mmsFORTH implementation from
Miller Microcomputing Services. I am
guite satisfied with the system to
date, and look forward to other exten-
sions. I have distributed several
FORTH programs to MMS which they may
use in their newsletter. Should the
FORTH Interest Group have a program
exchange or publish programs, I will
submit these programs to you also.
(See #2 and #3 below.)

Andrew W. Watson
Vinton, VA

Editor...

#1 - Use the Mail Order page and see
Information and New Products
sections of FD.

#2 - Send programs to FD!

#3 - Address for Miller Micro-
computing Services, 61 Lake
Shore Road, Natick, MA 01760.

I want to tell you how impressed I am

at the quality of the Installation
Manual and the 6800 Assembly Source
Listing!

The 6800 listing provided everything
I needed to build an identical source
file. The Symbol Table and hex dump
were especially useful in tracking down
the last small typos. (I used the
check sums for the 'Sl' dump to locate
typos such as INS instead of INX.) To
get FORTH running on my system, all I
did was to modify the ACIA address and
delete the coding for Trace.

I notice a peculiar behavior
regarding the stack. If I type . when
the stack is empty, I get an error
message, as expected. But after the
error message, there are two numbers on
the stack. 1Is this normal?

Gordon Stallings
Bartlesville, OK

Editor...

The numbers left on the stack after
an error are the block number and
character offset. See ERROR. This
allows WHERE (Scr88) to display the
offending text.

Thanks to John James and FIG,
I've upgraded my sub-FORTH to what I
now call 2650-FOURTH. To date, except
for the disk I/O verbs, my FORTH more
or less matches Mr. James' FORTH with
the exception that I've incorporated an
assembler, it's fully ROM based and it
has a few more primitives. I do
support a cassette I/F but can't use
the full power of the fast virtual
storage. I will release a copy of my
2650-FORTH to FIG as well as any
application work that I've done.

Myself being broadly classified
as a computer architect or computer
designer, I have a very keen interest
in turning out a FORTH engine (to
borrow a phrase from Western Digital),
and will attempt the implementation. I
will probably use the 2900 series bit
slices since I have all the development
tools. 1Is there someone in this wvein
that I could contact?

Edward J. Murray
Pretoria, Union of South Africa

miw...
Look forward to receiving your

2650-FORTH. Address for John S. James,
P.O. Box 348, Berkeley, CA 94701.

I was somewhat disconcerted when I
read the article by Mr. David J. Sirag,
"DTC Versus ITC for FORTH on the
the PDP-11", FORTH Dimensions, Volume
1, No. 3. The author has, I believe,
misunderstood the intent of the article
by Mr. Dewar.

FORTH DIMENSIONS II/1

~Page 16

In Mr. Dewar's ariticle, the
definitions of direct threaded oode
(DIC) and indirect threaded code (ITC)
ae:

"DTC involves the generation
of code consisting of a linear
list of address of a linear list
of address of routines to be
excuted."

"ITC..." (involves the generation
of code consisting)"... of a
linear list of addresses of words
which contain addresses of
routines to be executed."”

As applied to the FORTH type of
hierarchial structure (hierarchial
indirect threaded code?), I would
extend Mr. Dewar's definition to
be:

"ITC involves the generation of
code consisting of a linear list
of addresses of words which
contain addresses of routines to
be executed. These routines may
themselves be ITC structures.”

However, Mr, Sirag based his conclu-
sions on the following loose defini-
tion:

"The distinction between DIC and
ITC as applied to FORTH is that
in DTC executable machine code
is expected as the first word
after the definition name; while,
in ITC the address of the
machine code is expected."”

Obviously, the two men are not
referring to the same things. Mr.
Dewar is referring to the list of
addresses which define the FORTH word,
while Mr. Sirag is referring to the
implementation of the FORTH inter-
preter. If indeed Mr. Sirag's state-
ment were true (which it is not) that
their "analysis contradicts the
findings of Dewar”, then they should
have implemented a DIC language rather
than the ITC language of FORTH!
Indeed, a careful examination of what
is actually occuring in LABFORTH

reveals that their techniques are
logically identical to Dewar's ITC.
They have simply, through clever
programming, taken advantage of a
particular instruction set and archi-
tecture. It is beyond the scope of
this letter to prove this equivalence,
or to suport the FIG desire to have a
common implementation structure for all
versions of FIG FORTH.

Please note that I am not quibling
over semantics with Mr. Sirag. All
definitions are arbituary. {However ,
the value of a definition lies in its
consistency, precision, and use-
ability. I find Mr. Sirag's definition
of DIC and ITC to be inconsistent with
the environment in which he operates,
FORTH, and thus quite useless.) My
intent is two fold: (1) I am a self-
appointed defender of the excellent
work of Mr. Dewar, and (2) I want to
correct any misconceptions concerning
this issue for readers of this news-
letter who did not have access to
Dewar's (better) definition of DTC and
ITC.

Jon F. Spencer
Sherman Oaks, CA

Many thanks to John Cassady for
writing an excellent 8080 FORTH and
to Kim Harris for implementing the
necessary mods. I received 8080
fig-FORTH Ver. 1.1 on 2 October
1979 and within a few days had the
assembly language source typed in and
assembled. A day or two later the
editor with a suitable patch for
the MATCH code was up and running
along with the disk based long errox
messages. I have been learning and
gaining experience with fig-FORTH ever
since.

After more than a year of using
STOIC from volume #23 of the CP/M Users
Group it is really nice to be using a
true FORTH that is consistant with the
examples in the FORTH Inc. manuals and

Page 17

TORTH DIMERSTONS 11/1

the several articles that have appeared
on FORTH. I cannot over-emphasize how
well documented the fig-FORTH system is
and how easy the system was to bring
up. No bugs or errors have been
uncovered in nearly six months of
use.

The only thing missing from this
otherwise nearly perfect package is
the assembler vocabulary. Is an
8080/2-80 assembler vocabulary avail-
able from the FORTH Interest Group or
if not is any planned? 1If an 8080
assembler is available or is planned a
short note or a word about future plans
in the next issue of FORTH DIMENSIONS
would be sufficient.

In any case I hope I get to see
some of you at NCC in May so that I can
personally thank you for making FORTH
available to me...

Sincerely,

M. Paul Farr
2250 Ninth Street
QOlivenhain, CA 92024

Editor —

Yes! An 8080 assembler is now
available in source code to complement
8080 fig~-FORTH. Send $3.25 (includes
postage) to John Cassady, 11 Miramonte
Road, Orinda, CA 94563.

Many thanks for the fig-FORTH
installation manual glossary and FORTH
Model, which have been difficult but
enjoyable items of study since they
arrived a couple of weeks ago.

Like many of your members I became
interested in FORTH without having
access to a FORTH system, and gained my
first practical familiarity by using
the FORTH low level interpreter style
of linkage on machine code programs.

With help from the Model I have now
got to grips with the outer interpreter
and virtual memory system, and will be
getting together with Bill Powell and
other FORTH fanciers over here on an
cooperative implementation effort.

Many thanks for your effort and
creativity, which are not unapprecia-
ted!

Bill Stoddart
15 Croftdown Road
London NW5, England

Editor's note -- Bill had a marginal
note to this letter: "certainly grows

on you. This really is ‘'Computer
Liberation.' BASIC was just a red
herring.”

Do you have a 280 version of fig-
FORTH? It is not listed on your arder
sheet but reading the text I got the
impression that you do.

By the way, I have a tutorial paper
discussing assembly programming in
FORTH environment for both 8080 and
280. It is available, including source
listing written in fig-FORTH, from
KALTH microsystems. The price is
$5.-US for 8080/85 wversion, $7.-US for
280 version or $10.-for both (add 15%
in Canadian funds).

Also, I am working on the assembler
for the Intel 8086/88. If I knew that
there are also other people interested
in it, that would motivate me getting
it complete sooner. (It is a cross-
assembler that can be run on any FORTH
based system.)

Yours truly,

Kalman Fejes

KALTH microsystems

P.0O. Box 5457, Station "F"
Ottawa, Ont., Canada

FORTH DIMENSIONS II/1

Page 18

Editor —

Fig doesn't have a plan a 2-80
version of fig-FORTH. We would be
pleased to publish a contributed
version, if as complete as the 8080
Version 1.1

As a participant in the Forth Inter-
national Standards Team, I cast a yeah
vote for the inclusion of "TO" and its
requisite definition of VARIABLE
{though I prefer the name FIELD).
Although I was first exposed to this
definition on Catalina Island, it
has many similarities to my own
implementation of FIELD and RECORD.

- In its simplest form, as outlined
by Paul Bartholdi, FORTH DIMENSIONS
1/4, integer variables of predetermined
precision are defined to behave as
bidirectional constants. Normal
behavior is to push their stored value
onto the stack. A momentary, alternate
behavior is to pop the stack value
into their confines. This temporary
behavior occurs only when referenced
after the word "TO", which sets a
direction flip-flop. Thus

VARIABLE A
10 TO A

VARIABLE B
ATOB

will place 10 into A and B without
using the @ (fetch) and ! (store)
operators.

Each of us, who has implemented
a version of "TO", encounters some
exasperation in dealing with the
addresses appearing on the stack.
Since, in the prior illustration,
neither A nor B supplied its address
for TO's execution we ponder the
shortcomings of this newly offered
definition and reluctantly sprinkle our
procedures with @ and !.

FORTH is an elaboration on the
indirect threaded list program archi-
tecture. As programmers we are free to
add indirection to our methods of

accessing and manipulating data.
Indirection, however, is only a
navagation technique for constructing
the address required by the hardware to
implement our desired operation. When
at the end of our circuitous logic, are
we then to complain "What can I do
about this address”.

Let's face it, @ and ! are perfect
operators.

I value TO and its implications 1in
system structure. The procedures
written using "TO" are more readable
than standard Forth, and result in
fewer visits to NEXT as they are
executed. "TO" will be included in any
system I generate, together with other

essential words, which include @ ard
1

As a Forth fanatic and a FORTH
DIMENSIONS fan I sincerely hope that
the newsletter will continue. If there
is some assistance I can render please
advise.

Williams S. Emery
2700 Peterson Place, #53D
Costa Mesa, CA 92626

Editor —

You're doing it! By thoughtful
correspondence and participation in
group events people such as Bill are
multiplying our efforts.

STRUCTURED VARIABLES

From time to time at the Fig meet-
ings the question of structured
variables arises. This is a proposal
for how they might be handled.

The December 1978 issue of com-
munications of the ACM contaiqed a
paper by John Backus on "Functional

Page 19

FORTH DIMENSIONS 11/1

Programming™ (also called variable free
programming). I believe a variation of
his ideas could be implemented in
FORTH. Suppose we are given a pair of
queues with bases at opposite ends of
available memory pointing toward each
other. Then enter an array into one of
them and begin processing it. Let the
results go to the other queue as they
are developed. Multiple steps would
alternate between the queues until a
final result is obtained. These
alternating queues can give some of the
effects of functional programming (1)
large state changes, (2) limited memory
of past states, {(3) no concern with
garbage collection, 4) variables not
named or declared.

Backus placed operators within the
data. This could be done or not, as
experience dictates. 1These queues are
not to replace the stack which FORTH
already has. The stack could be used
to hold what I would call operator
var iables or modifiers.

Let us look at a couple of simple
examples. Suppose we wanted to trans-
pose an array. 1 2 3

456

Enter it into one queue. [1 2 3 4 5
6]. Type in the transpose command. 2
1 TP. The 2 and the 1 go on the stack
so the transpose function knows what
kind of a transpose is desired. The
result will come out on the other
queue: 1 4 2 5 3 6]

Should we wanted to sum a vector.
(12 3 4 5 6]. Type in a reduction
command. ' + RD. The 'Tick' put the
address of 'Plus’ on the stack so the
reduction function knows what kind of
reduction to perform. The other queue
receives the result: 21}

W. H. Dailey
47436 Mantes Street
Fremont, CA 94538

FORTH IN THE PUBLIC VIEW

After the survey article in March
15, 1979 Electronics, Mr. Robert
Gaebler wrote the usual letter to the
editor critiquing FORTH's postfix
notation. We are reprinting a well
stated rebuttal to this letter which
also appeared in Electronics.

To the Editor:

I want to reply to Robert Gaebler's
letter on expression format in the
FORTH language [Electronics, July 5,
1979, p. 6].

Gaebler notes, and I agree, that
compilers can do the translation from
infix to postfix notation and thus save
the programmer both work and the risk
of errors. Unfortunately, these
advantages are not available without
same penalty for extensible languages
such as FORTH. If the compiler is to
translate, it must know how to parse
expressions. The parsing rules for
primitive operators are supplied with
the compiler, but those for the added
operators must be supplied by the
programmer at compile time, which makes
the parser much more complicated.

Examination of almost any program
will reveal that the majority of
program statements are nonalgebraic
o can easily be converted to a non-
algebraic form. Thus the advantages
of infix notation, when present,
apply only to a fraction of the
program statements., For most function
definitions, the prefix notation of
subroutine or macro calls is required,
and this can be replaced by postfix
notation with little or no loss of
clarity.

Use of postfix notation l-zaves
the parsing of all expressions in the
hands of the programmer. It means that
arguments for an operator may be

FORTH DIMENSIONS 11/1

Page 20

xepared using the full power of the
frogramming language, without any
restrictions being imposed by the
mpller. With this freedom comes the
scssibility of error, and argument
weparation is one of the most error-
oxone portions of programming in a
_anguage such as FORTH. If effort is
> be spent on improving the ease of
srogramming, it should be spent on
simplifying argument preparation
and stack manipulation. Postfix
notation, with the applicative style of
xogramming that it produces, has so
many advantages that it should not be
sacrificed to an algebraic notation
that is not "natural,” but only some-
thing we all learned in school.

THIS IS THE END!

THE END CF VOLUME Il #1!
THE END OF YOUR MEMBERSHIP?
DON'T LET IT HAPPEN!
RENEW TODAY!

CHECK THE LABEL FOR RENEWAL DATE!
SEND A CHECK TO F!G TODAY!
MAKE THIS YOUR BEGINNING!

RENEW NOW!

%

5 T ——_.__—ﬂ
MAKE A COPY FOR A FRIEND!
POST COPY ON YOUR BULLETIN BOARD!

ﬂ

—_ FORTH DIMERSTORS IT/1
Page 21

N

r____
\ | ‘]

HONTH TIHISIDNS

i R
‘ FORTH INTEREST GROUP Volume Il
P'Og rl 11%5A 94070 PNumggrozo
San Carlos, rice .
P
P
L L 22 General Information
/ _)
Publisher’'s Column
Ny Lyons’ Den
— 23 Temporal Aspects of the FORTH
f Language
26 A Generalized Loop Construct
for FORTH
29 File Naming System
32 Towers of Hanoi

33 Letters

FOSTH (MTIENSIOES

=_o:shed by Forth Iinterest Group
July/August 1980
Roy C. Martens

vZiume il No. 2
cubhsher
Ecitorial Review Board

Bil} Ragsdale
Dave Boulton
Kim Harris

John James
George Maverick

FORTH DIMENSIONS solicits editorial material,
comments and letters. No responsibility is
assumed for accuracy of material submitted. ALL
MATERIAL PUBLISHED BY THE FORTH INTER-
EST GROUP IS IN THE PUBLIC DOMAIN. Infor-
mation in FORTH DIMENSIONS may be repro-
duced with credit given to the author and the Forth
interest Group.

Subscription to FORTH DIMENSIONS is free
with membership in the Forth interest Group at
$12.00 per year ($15.00 overseas). For member-
ship, change of address and/or to submit material,
the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

=—HISTORICAL PERSPECTIVE==

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radic Astronomy Observa-
tory, Charlottesville, VA. it was created out of
dissatistaction with available programming toois,
especially for observatory automation.

Mr. Moore and several associates formed
FORTH, inc. in 1973 for the purpose of licensing
and support of the FORTH Operating System and
Programming Language, and to supply applica-
tion programming to meei customers’ unique
requirements.

The Forth Interest Group is centered in Northern
California, although our membership of 1100 is
world-wide. It was formed in 1978 by FORTH
programmars to enccourage use of the language by
the interchange of ideas through seminars and
publications.

=——=PUBLISHER'S COLUMN =—=

Summer is here. Lazy days should abound but
not at FIG and FORTH DIMENSIONS individuals
and groups are working hara on Standards and
Cases. Soon there will be announcements and
printing of these efforts. In tact, if everything works
out right, the next issue of FORTH DIMENSIONS
wili be the big one that everyone has been waiting
for (have you renewed your subscription and
membership?). This doesn't mean that we aren't
eager for more articles and letters from members,
send them. More issues are in the works

Now that we have a few issues of the new looking
FORTH DIMENSIONS under our belt, we'd like to
have your suggestions about improvements and
additional information. Do you want more tech-
nical material? More beginning input? More new

Remember your inputs are what make FORTH
DIMENSIONS.

Have a nice summer. Renew if you haven't
already.

Roy Martens

LYONS’ DEN

While listening to the tapes ct the FORTH
Convention (availabie from Audio Village, P.O.
Box 291, Bloomington, |A 47402, $16.00 for tour
tapes) | noticed puzzlement over how toc com-
municate concisely the nature of FORTH, that is,
what single term—cperating system, compiler,
interpreter—indentities the class to which it
belongs. How about referring to FORTH as a Meta
Interpreter—a program for generating an inter-
preter (the application) to provide an interactive
tool for solving application specific probiems
(sometimes referred to as JOL's, job-oriented-
languages)? Other members cf this ciass are LISP
and an obscure IBM system called PLAN, as well
as APL. FORTH has unique features distinguish-
ing it from other members of this class, being more
optimized for arithmetic than LISP, for example,
and being more compact and iower level than APL.
Also, its implementation is rmore like LISF than
APL.

Continued on pg. 21

Page 22

FORTH DIMENSIONS I1/2

TEMPORAL ASPECTS OF THE
FORTH LANGUAGE

A BEGINNER'S STUMBLING BLOCK

John M. Derick

Linda A. Baker

P.O. Box 553
Mountain View, CA 94042

Novice FORTH programmers who have
had previous experience with other,
more traditional, programming languages
almost invariably become confused when
first dealing with FORTH. A first time
user sitting down at a FORTH terminal
soon notices what seem to be time-based
inconsistencies. That is, the language
seems to require that things be done in
the wrong order or that the language
itself does things out of time order.
The novice, striving to understand
these supposed "inconsistencies"
detects time as a note of commonality
and therefore lumps them all together
as one oddity, while in actuality there
are three separate areas of difficulty.

The interesting point of this is
that the cause of this confusion is so
elementary that once the problems are
understood, it is difficult to look
back and pinpoint why the confusion
arose in the first place. This is why
these elementary problem areas are not
stressed in most existing FORTH litera-
ture and are just assumed to be part of
the longer than normal learning curve
associated with FORTH. Making it clear
in the neophyte's mind that there are
three separate, but related, factor
shortens this learning curve.

Let us examine what situations cause
this confusion.

Sitting at a FORTH terminal, you
enter a FORTH word, hit a carriage
return and the word executes. Other
times, though, you enter a line of
FORTH words (including the one you just
executed previously), hit carriage

return and nothing executes. But when
used later on this same word executes!
As you learn more, you discover that in
order to perform some functions you
must actually alter the traditional
time sequence of programming and modify
FORTH's compiler after it already works
and is ebugged. Then, to add even more
confusion, you find that some words,
when added to the compiler, will
execute different parts of that same
word at different times. Or, when you
edit a FORTH program, save it on disk
and then compile it; some parts compile
as expected but other words execute
immediately.

To an experienced FORTH programmer
it is quite obvious that there are
actually three separate (but releated)
aspects of FORTH represented in this
example. To a beginner all of these
attributes are lumped together 1in
one tangled question of "who's on -
first????" and "when did he get
there??2?2?"

With the exception of different
parts of a word executing at different
times, these are very trivial problems
to an experienced FORTH programmer. To
the beginner they are totally new
concepts that must be sorted out and
grasped——even though once understood
they really are trivial concepts.

Let us first address the most basic
of these three time related stumbling
blocks; that of modifying the compiler.

Before we continue it is important
to point out that there are several
steps (one may almost say laws) that
always must be followed to generate
object code from source code. Tradi-
tional programming languages take these
steps in a straight line one-pass
manner. FORTH also takes these same
steps (i.e., a compiler has been
written and installed). The difference
with FORTH however, is that the act of
writing the compiler is not intended to
be a one-pass step. Instead it is a

FORTH DIMENSIONS

Page 23

recursive procedure where the compiler
15 constantly modified and tailored to
the users needs over and over again.
This alters the time sequence of things
and is a slightly shocking concept but
the basic rules are still the same.

In traditional languages a pro-
grammer goes through several temporally
separated steps to generate a user
program: A compiler (or assembler), an
editor, a link editor and loader are
all separately created and installed on
the user's system. Then the user edits
a program, compiles it, links it, then
loads and tests it. Everything is done
in such absolutely clear cut steps that
one is subtly led to believe that this
is the absolute nature of the world.

FORTH on the other hand is a highly
interactive, dictionary-based language
where new additions to the language
(i.e., user added words) are simply
added to the end of the dictionary
thereby "extending" it. FORTH's
compiler is part of this dictionary
and therefore words added to the
dictionary can actually affect or be
used in the compiler. In FORTH, this
is not only possible, it is required if
one is to fully use the power of the
language.

A simple concept? Yes. But it is
so contrary to traditional practice
that it is hard for a neophyte to
believe advanced documentation which
tells how to build compiler directives
such as "creating” or "defining" words
while only alluding to the fact
that the compiler can and should be
modified.

Therefore, let us emphasize this
fact: The compiler in FORTH is not

sacred. The traditional sequential
steps of writing a compiler and forever
using that particular product do not
apply in FORTH. FORTH's compiler may
be modified at any time. All, or part
of it may be executed at any time.
As a matter of fact "creating" or

"defining" words used in the compiler
are actually tiny standalone compilers
in themselves and can he used to
perform mini-compilations whenever they
are referenced.

Now that this compiler modification
aspect has been "factored" out of the
jumble of time related "confusions",
the beginner is still left with the
second point of confusion: Namely why
words sometimes execute immediately and
sometimes do not.

The technical reason why words
execute immediately 1s that the
"precedence" bit associated with
that word is set on; but it is the
philosophical reasoning for the
existence of the precedence bit that
is of importance to the neophyte.

Again all of this is tied in with
the fact that FORTH's compiler is an
integral interactive part of the
language. It is an integral part of
the language because it 1is composed of
common FORTH words used not only in the
compiler but in every other FORTH
application as well.

Entering a FORTH word or words on
a terminal, and hitting carriage
return causes that word or words to be
immediately executed and is similar to
executing an already compiled and
linked object module. The dictionary
is searching until the word is found
and the definition is executed. To do
this, the word is preceded by a colon,
FORTH is put into the compiler state,
and all words up until a semicolon will
be compiled (i.e., placed into the
dictionary for future execution). This
is similar to inputting source code to
a FORTRAN compiler and getting object
code out.

The point being made here is that
FORTH continuously changes between
"compiler" state and "execution”
state. When in compiler state,
most input words are compiled, not

Page 24

FORTH DIMENSIONS II/2

executed. Notice the word "most".
Some words are executed while in
compiler state. These are naturally
called compiler words.

These compiler words are identical
in appearance to any other FORTH word.
Indeed they actually are simply FORTH
words with the exception that their
precedence bit 1s set. They are
analogous to assembly language pseudo
ops or oompiler directives. A pseudo
op (like ORG) 1in assembly language
gives direction to or is "executed" by
the assembler; not the object code. It
is never executed by the user program.

Thus, words in FORTH may be "flagged"
to operate as pseudo ops. That is,
they may be chosen to execute immedia-
tely and thereby perform some act of
compilation upon other words in the
definition; (even if they are imbedded
inside of a string of source code--
just as a pseudo op would do in
assembly language). This "flag” is
the precedence bit. When the FORTH
interpreter detects that this bit is
set, it will cause it associated word
to be executed immediately, even while
in compiler mode. Using the word
IMMEDIATE just after a definition is
the method used to set the precedence
bit.

This is a very powerful feature
of the FORTH language. It allows
definitions to execute while in
compile mode and since FORTH makes no
distinction between "supplied" words
and user written words the compiler
itself can be added to and improved.
This feature is called "extendability".

There are certain defining words
in FORTH that take the trait of "when a
word is executed" one step further.
Conceptionally advanced word such as
BUILDS and DOES allow a definition to
be constructed so that the first half
of the word will be used at compile
time but the second half will execute
at execution time.

While it is beyond the scope of this
paper to go into the usage of BUILDS
and DOES type words, it should be noted
that they exist and really do have two
separate times of execution.

The last point of confusion is: When
words contained in a "loaded" block
execute immediately instead of com-
piling (or visa versa). When FORTH
loads a block, it treats the incoming
data almost as if it were being read
from a keyboard. Definitions are
compiled and put into the dictionary
as they are encountered in the data
stream. But, if a word is encountered
that is not contained inside of a
definition (whether intentionally
or not!) that word is executed imme-
diately, just as if it was entered from
the keyboard. This is a quite straight
forward, and quite understandable
effect once it is pointed out. The
rule here is to put words to be
canpiled inside of definitions. Leave
words to be executed immediately
outside of definitions.

A good example of word purposely
left outside of a definition is
DECIMAL. This word is normally used as
the last word of a loaded block to
insure that after compilation the
system is left in its standard base ten
state.

In summary, the temporal confusion
that occurs when first using FORTH
is all quite elementary and under-
standable--at least in principle. And
at a beginners stage, principle is very
important.

The three general categories;
modifying the compiler, compiler
directives using the precedence bit,
and loading and compiling blocks, all
perform execution at predictable
times and really do have a direct
correspondence with traditional
programming seguences.

FORTH DIMENSIONS

Page 25

A GENERALIZED LOOP
CONSTRUCT FOR FORTH=———"—

For some time, I have been building
my own version of a FORTH-like language
with direct rather than indirect
threaded code, running on the 8080.
Last year I learned that my approach is
almost identical to that of URTH; this
is not surprising since the design
criterion of highest possible execution
speed was the same. To this end, the
inner interpreter has one level of
indirection removed (compared to
FORTH) and jumps (as for IF , ELSE ,
LOOP , WHILE , UNTIL , etc.) are
compiled to their 16 bit absolute
value, rather than a 16 bit offset.
All this by way of preface that
although my "home base" is isolated
from the West Coast and my implementa-—
tion of the following words may not be
exactly FORTH compatible, yet I feel
that the concepts presented are new and
useful in the FORTH environment.

The article 'FORTH-85 "CASE" STATE-
MENT' by Richard B. Main in FORTH
DIMENSIONS, Volume 1, Number 5 had a
catalytic effect in the development
of these ideas, specifically the
technique of saving an unknown number
of addresses on the stack and using
zero as a marker for the last address.
It seemed to me that one area to apply
this scheme with good effect is in the
BEGIN ... UNTIL and BEGIN ... WHILE
... REPEAT loop constructs which
currently permit only one exit test.
This sometimes forces awkward stack
manipulations to "or" conditions when
two or more conditions must be tested,
any one of which is sufficient to
terminate the loop. The proposed
constructs solve this problem, require
no more lower level CODE words than
already exist, and add to the elegance
of the lanquage by removing the word
REPEAT.

The generalized loop is constructed
one of two ways:

BEGIN ... WHILE ... WHILE ... WHILE ... UNTIL
or
BEGIN ... WHILE ... WHILE ... WHILE ... AGAIN

There can be any number of WHILE
words in each loop, including none.
The meaning of the words BEGIN ,
WHILE , UNTIL , and AGAIN 1s
exactly the same as currently under-
stood; no new concepts need be learned.
For newcomers to the language (of which
we all hope for, and in large numbers)
the learning task is easler because we
have reduced the number of FORTH basic
words while at the same time increasing
the power of the language by permitting
more powerful combinations of these
words. This is surely a good direction
since the human (programmer) mind is
unsurpassed at manipulating symbols,
but not in remembering them.

The Words

The following definitions work in
my system. In FORTH, where XELSE and
XIF require a compiled offset rather
than an absolute address, the words
WHILE , COMPADDS , AGAIN , and
UNTIL must be changed slightly.

(GENERALIZED LOOP WORDS - dEGIN WHILE UNTIL AGAIN

: BEGIN HERE O ; IMMED (ATE
: WHILE LIT XIF , HERE O ;O IMMELIATE
: UNTIL OROP LIT XIF , , ; IMMEDIATL « TRYPIHANY
: COMPADDS BEING DUP [# HAERE 1e 14 s5wdP 0 LNOIF 1= oNTIL
: AGAIN LIT XELSE , COMPADDS , ; IMMEULIATH
: UNTIL LIT XIf , CUMPADDS , ;o IMMET JATE

How They Work, Compile Time

BEGIN Pushes onto the stack the
address to which the loop
should jump, followed by a
zero. The zero is used as a
market by the COMPADDS
word.

WHILE (if used) Compiles a ocondi-
tional jump to the temporary
address of zero, and also
pushes the address of the
temporary address to the

Page 26

FORTH DIMENSIONS II/2

stack. The temporary
address, which can never
be zero, will later be
overwritten by COMPADDS
with the address of the next
word immediately after the
loop structure; this is how
WHILE effects a loop exit.

UNTIL (temporary) Allows correct
compilation of the COMPADDS
word's BEGIN ... UNTIL
structure. It will shortly
be replaced with the gen-
eralized UNTIL .

COMPADDS Overwrites the address of all
previous WHILE words until
the last BEGIN . Each
address on the stack (there
may be none) is overwritten
with the vale HERE+2. The
zero placed on the stack by
the last BEGIN terminates
the overwriting and leaves
the address of the first word
in the loop on the top of the
stack.

AGAIN Compiles an unconditional
jump, completes all previous
WHILE words, and then
compiles the address of the
unconditional jump, pointing
to the top of the 1loop.

UNTIL Identical to AGAIN , except
a conditional jump is com-
piled, allowing a conditional
loop exit.

How They work, Run Time

They work the same as the previously
known BEGIN , WHILE , ONTIL , and
AGAIN .

Error Procedures

Error checks can easily be added to
these words. This is done as below:

{ GENERALIZED LOOP WORDS - BEGIN WHILE DNTIL AGALN)

{ WITH ERROR PROCEDURES AS PER RULL-HOLLAND

: BEGIN HERE 0 ; ITMMEDIATE
. WHILE t ?PATIRS LIT X1F, HERF O , 1 s IMMEBIATY
: UNTIL DROP DROP LIT XI1F ,
. COMPADDS BEGIN DUP IF HERE 1+ 1e¢ SwAP ' ENDTT O UNTTL
: AGAIN 1 2PAIRS LIT XELSE , COMPADDS ;O IMMEDIATYY
: UNTIL 1 ?PALIRS LIT XIF , « OMPARDS o IMMEDILATE

The operation is self-evident.
Conclusion

Generalized loop words BEGIN ,
WHILE , ONTIL , and AGAIN have
been proposed. Their use provides,
as a subset, the well known actions
of BEGIN ... AGAIN , BFGIN ...
UNTIL , and BEGIN ... WHILE ...
REPEAT (with the word REPEAT
replaced by AGAIN). When used in
this manner the new words impose no
more run time overhead in time or
space than the words they replace.
If the new words did nothing more,
they would still be desirable
because they "orthogonalize" the
unconditional loop termination word,
making it AGAIN regardless of the
presence or absence of the WHILE
word.

But, as an added benefit of the new
words, more powerful constructs such
as BEGIN ... WHILE ... UNTIL or
BEGIN ... WHILE ... WHILE ... AGAIN are
possible. Thus multiple tests and
exits from a loop can be arranged in
the most natural order, without the
need to "or" the results of the tests.
These multiple loop exits do not
violate the principles of structured
programming since they all lead to a
common point; in other words, the loop,
as a structure, has one entry and one
exit.

Future Research

After much thought about the impli-
cations of the proposed words in
relation to the FORTH philosophy of
programing, I must say that of the two
changes wrought by these words, viz.

FORTH DIMENSIONS

Page 27

DO TMMEDITATLE (P MPOKHARY

o orthogonalization of the 1loop
“yotruct, and the ability to have
“sitaple loop exits, I believe that
vthogonalization is by far the most
Important vesult. In FORTH, while the
very act of programming consists of
cxtending the language by creating many
new words usetul in the application
environment, even so, I believe that
the 1nitial basic words, especially the
structured programming constructs such
as IF ... ELSE ... ENDIF , BEGIN ...
UNTIL , and DO ... LOOP should be as
tew and as general purpose as possible.

In addition, they should be care-
fully names so as to convey their
action to programmers new to FORTH, but
familiar with similar structures on
other, "industry standard" languages
such as ALGOL, PASCAL, and C. The
construct IF ... ELSE ... THEN is
poor in this respect; the word THEN
confuses novices to FORTH since it
usually implies selection, while in
this case it is really a construct
terminator. I assume that this is the
reason why the change from THEN to
ENIF was specified in FORTH-79.
Similarly, BEGIN ... END is confusing
since it does not imply repetition to
the average programmer. FORTH-79
partially corrects this confusion with
BEGIN .. UNTIL , but I believe some
word signifying repetition should
replace BEGIN , such as REPEAT ...
UNTIL , REPEAT ... AGAIN , and REPEAT
... WHILE ... AGAIN .

As for DO ... LOOP , this construct
cries out for a convenient way to
prematurely exit the loop. LEAVE
seems weird - at odds with commonly
accepted practice - since it has a
deferred effect, taking place only at
the end of the loop. Although I won't
remove it from the language, I suggest
an alternative: Do ... WHILE ... LOOP
. At the execution of the optional
WHILE , 1if the stack is zero the loop
1s exitted. Not possible because
WHILE 1is already used for the REPEAT
... WHILE ... AGAIN 1loop, you say?

But it 1is possible! A very useful
by-product of the Error Procedures of
University at Ulrecht, Netherlands is
that they always leave at the top of
the stack (during compile time) a
flag indicating the identity of the
innermost construct, different for
REPEAT ... and DO ...; it is then a
simple matter to arrange WHILE to
have different actions and to compile
entirely different CODE words depending
on this value. Of course, we would not
limit the number of WHILE words
between DO and LOOP . LOOP must be
modified, as was described above for
AGAIN , to permit this.

Bruce Komusin

Ontel Corp.

250 Crossways Park Dr.
wWoodbury, NY 11797

New Product

OmiForth, from Interactive Computer
Systems, is now available for the North
Star computer. FORTE combines struc-
tured programming, stack organization,
virtual memory, oompiler, assembler,
and file system into an extensible
macrolanguage. Organized as a dic-
tionary of words, FORTH allows defining
new words that extend the vocabulary to
suit any application. Words are
compiled on entry into code ready'for
immediate test, and execute ten times
faster than Basic. FORTH supports
coding time-critical routines in
assembler for the fastest response.
OmniForth contains the interactive
FORTH compiler (modeled on.Fig-FORTH),
assembler for the 8080 and z-80, file
system, and text editor. Omi-Forth
requires 24K memory and North Star DOS,
and costs $49.95; an optional Intro-
duction to FORTH manual is available
for $15.00. Interactive Computer
Systems, Inc., 6403 DiMarco Road,
Tampa, FL 33614.

Page 28

FORTH DIMENSIONS 11/2

=———=FILE NAMING SYSTEM =——=

Peter H. Helmers
University of Rochester

This particular FORTH file naming
system is set up to use a disk based
directory to name files which are
comprised of a series of disk blocks.
The system does not include any
specific file formats, but instead is
used to translate a filename to a block
number. This block number can be a
traditional "load block", a directory
block for a linked set of random data
blocks, or perhaps the initial block in
a multi-block text file. Routines are
available to control a disk's bit map
of allocated blocks so that already
utilized blocks are not overwritten.
Additional routines allow creation of
filename/block entries at either fixed
block locations or at random locations,
or deletion of file entries, directory
listings, etc.

The philosophy in writing this
package was that file formats should
be user definable although several
standard uses are being brought up for
text files, and data arrays stored in
consecutive blocks. By using the words
available, additional file formats can
be easily added.

The file naming system presently
uses three blocks at the end of each
disk. The first block contains two
data arrays: a bit map of block usage
on the disk, and a list of block-
pointers for each defined filename.
The bitmap uses one bit per disk block
to define whether the block is used or
not; the bit is a "1" if the block is
used. The block pointer array consists
of 64 integers which point to the
filename's starting block number. A
value of -1 means that the filename is
undefined.

The second two blocks contain 64
filename strings of up to 32 characters

each. Each name string is actually
stored as a fixed length 32 byte string
with any extra characters being padded
blanks. A non-valid file is flagged by
a -1 value for the block pointer, not
by a null of special string.

The following is a list of the
primary user oriented words in this

file naming package:
("STR") FIND-NAME (INDX)

FIND-NAME searches for the STR in the
directory and returns its directory
index if found, or a -1 if not
found. Thus a user can test for a
-1 to see if a filename exists.

INIT-DIRECTORY

INIT-DIRECTORY is used to set all
block pointers to -1's so that no
files will be considered to be in
existence.

INIT-BIT-MAP
INIT-BIT-MAP is used to set all
bit map bits to 0's, thus indicating

that no disk blocks are being
used.

(BLK#) FREE-BLK

FREE-BLK is used to reset a given
block's bit map bit, thus indicating
that it is not in use.

(BLK#) RESERVE BLK

RESERVE-BLK is used to set a given
block's bit map to indicate that it
is in use.,

FIND-FREE-BLK (BLK#)

FIND-FREE-BLK is used to find the
first free block encountered in the
bit map. It returns a "free" block
number if one can be found, or a -1
if the disk is full.

FORTH DIMENSIONS II/2

Page 29

("TQ!\PGIE") !!3221

NEW is used to create a new filename
entry with a block pointer found
from the first free block en-
countered in the bit map.

("NAME"), (BLK#) NEW FIXED

NEW-FIXED is used to define a new
filename with a specific block
pointer (for example, a traditional
"load block").

("NAME") FILE (BLK#)

FILE is used to translate a filename
string to a specific block number.

("NAME") ERASE

ERASE is used to erase the given
filename from the directory.

DIRECTORY

DIRECTORY is used to print a listing
on the console of all defined

filenames.
{(FILE NAMING SYSTEM - PHH - 12 3 79) BASE @ HEX
FILE-ERROR
DOCASE
DUP 1 = WHEN T" ALL BLOCKS USED *
CASE DUP 2 = WHEN T" FILE ALREADY EXISTS .
CASE DUP 3 = WHEN T" DIRECTORY FULL *
CASE DUP 4 = WHEN T* NAME TOO LONG -
CASE DUP S » WHEN T FILE NOT FOUND .
ENDCASE
CR
RESTART

2DROP (DO CASE BUG)
BASE ! iS

FILE NAMING SYSTEM - PHH -~ 12 4 79) BASE @ HEX
PB O DO T" " LOOP :

*“SPACES O DO " " "+ LOOP ; (ADD {TOS] SPACES TO STRNG)
“GET 20 SWAP "@F ; { GET 32 BYTE STRNG FROM ADDR ON TOS)
"PUT 20 SWAP "!'F (PUT 32 BYTE STRNG TO ADDR ON TOS)
FILE-NAME-FIX { MAKE NAME 32 CHARS LONG)

;?EN sup 1E > (CHECK THAT NAME <= 30 CHARS)

4 FILE-ERROR

THEN

20 -~ “"SPACES

{ NPOE, SO GIVE ERROR)
{ PAD W/BLNKS TO 32 CHARS)

BASE :5

(FILE NAMING SYSTEM - PHH - 30 NOV 79) BASE » HEX

OF8 CONSTANT DIR { FILE DIRECTORY BLOCKS YTART MbkE

INDX~ >STR-ADDR { INDX ON TNS ON ENTKY }
20 /MOD { 32 FILENAMES/BLOCK
DIR + 1+ (NAMES IN HLKS DIke!, DIkes !
BLOCK { ADDR OF BLOCK W/ NAMEL IN IT 1
SWAP 5 «-L (BYTE OFFSFT INTO BLOXK

.

+ RTRN ADDK OF NAME STHING UN TOL 1

INDX->BLK-PTR-ADDR INDX ON Tus)

{
1 <-L (CREATE BYTE OFFSET INTO BLOCK 1}
DIR BLOCK { ADDR OF BRLOCK WITH FILE POINTERS
+ { RTRN ADDR OF FILF'35 ALOCK PNTR
BASE ! iS
(FILE NAMING SYSTEM - PHH - 11 30 79) BASE ¢ HEX
-1 VARIABLE FILE~INDX -1 VARIABLE FILE-BLK
FIND-NAME -1 FILE-INDX ! (SET INDX FOR NO MATUH)
40 0 DO (CHECK ALL POSSIBLE NAMES)
1 INDX->BLK-PTR-ADDR @ -1 =
IF { VALID FILE - SO CHECK NAME MATCH)
“puUP 1 INDX->STR-ADDR "GET "=
IF { NAME MATCH FOUND
1 FILE~-INDX ! EXIT (SET INDX AND ESJAPE)
THEN { UTHERWISE)
THEN

{ TRY NEXT NAME CNTRY 1F NOT DONE)
(REMOVF TARGET STRING AND ... }
(RETURN THE INDX OF THE STRING

LOOP
*DROP FILE-INDX @

BASE ! :S

(FILE NAMING SYSTEM - PHH - 11 30 79) BASE ¢ HEX

: CREATE-NAME (FILE-NAME STRING ON TOS)
-1 FILE~INDX ! (SET TO INDICATE NO ROOM AVAIL
40 0 DO (SEARCH DIRECTORY FOR NULL FILE)
1 INDX->BLK-PTR-ADDR @ -1 =
IF (NULL, SO PLACE NAME HERE)
1 FILE-INDX ! { SAVE INDX WHERE NAME 1S SAVED
I INDX->STR-ADDR "PUT (SAVE FILE'S NAME IN DIR)
" UPDATE EXIT (NULL STR TO TOSS, AND EXIT)
THEN

LOOP { UNTIL ™ATCH OR END OF DIR }
“DROP FILE-INDX @ DROP TARGET OR NULL STRING, & |}

H (RTRN INDX OF NEW FILE)

BASE ! 38

{ FILE NAMING SYSTEM - PHH - 11 30 79) BASE @ HEX

: DELETE-FILE (DELETE FILE GIVEN BY INDX ON TOS
INDX~->BLK-PTR-ADDR { FIND ADDR OF BLK'S POINTER)

-1 SWAP ! (FLAG DELETION BY -! BLK PTR)
UPDATE (FORCE DISK UPDATE)

-DELETE ALL DIR ENTRIES)

INIT-DIRECTORY

40 0 DO { INDX ALL 64 DIR ENTRIES }
1 DELETE-FILE (DELETE EACH BY INDX)
Loop
H
BASE ! S
.
A Riddle

FORTH

Supervisor: What's the differ-
ence between
'ignorance' and

‘indifference'?

I don't know and I
don't care.

Programmer :

Page 30

FORTH DIMENSIONS 11/2

FILE NAMING SYSTEM - PHH - 12 3 79) BASE © HEX

(FILE NAMING SYSTEM - PHH - 11 30 79) BASE @ HEX {
. GET-BIT-MASK (GET BIT MAP INFO FOR BLK# ON TOS) ¢ FILE { XLATE FILE NAM:E ON TussS o HEXKS
DUP FILE-NAME-FIX { FORCE 32 CHAR STRNG LEN
7 & 1 SWAP <«-L { GENERATE BIT#, THEN BIT MASK) FIND-NAMF. DUP -V = { FIND NAME'S DIR OINDX)
SWAP 3 ->L { GEN. BYTE OFFSET IN BIT MAP) IF 5 FILE~-ERROR THEN (NAME NOT FOUND IN DIK
300 + INDX->BLK<PTR-ADDR @ { GET NAME'S BLOCK ¥)
DIR BLOCK + (ADD BIT MAP OFFSET W/IN DIR BLK) H (AND RETURN ON TOS)
DUP C@ (DUP IT, AND GET ITS VALUE) : ERASE { ERASE NAME ON TOSS FROM Dlg
ROT (RTRN BIT MAP ADDR, OLD BIT MAP) FILE-NAME-F1X (FORCE 32 CHAR STRING LENGTH)
{ BYTE, & BIT MASK ON TOS) FIND-NAME DUP -1 = (GET NAME'S DIR INDX, IF ANY)
FREE-BLK { BLK# ON TOS TO BE FREE'D } IF 5 FILE-ERROR THEN { NAME NOT FOUND IN DIR)
GET-BIT-MASK DUP DELETE-FILE (DELETE FILE GIVEN BY INDX#)
-1 XOR & SWAP { MASK BLK'S BIT MAP BIT TO 0) INDX->BLK~PTR-ADDR @ (GET THE OLD BLK POINTER
C! UPDATE { STORE BACK IN BIT MAP & TO DISK) FREE-BLK { ...AND FREE IT IN THE BIT MAP }
BASE ! ;S BASE ! :S
(FILE NAMING SYSTEM - PHH - 12 3 79) BASE @ HEX (FILE NAMING SYSTEM - PHH - 12 3 79)} BASE ¢ HEX
RESERVE-BLK (MARK BLK ON TOS AS USED) : DIRECTORY (PRINT ENTIRE DIRECTORY)
GET-BIT-MASK 40 0 DO (CHECK EACH DIR ENTRY)
OR SWAP C! UPDATE (SET BIT IN BIT MASK) 1 INDX->BLK-PTR-ADDR €@ (GET BLK PNTR)
DUP -1 = (IS IT AN EXISTANT FILE?)
INIT-BIT-MAP (FREE ALL BLKS, THEN RESERVE) IF { YES, SO PRINT ITS CONTENTS)
{ THE RANGE OF BLKS GIVEN ON TOS) I INDX->STR-ADDR { FIRST, GET THE ADDR OF THE NAME)
DIR O DO { FREE ALL BLKS IN DISK) "GET ". { PUT 1T ON TOSS, AND PRINT IT)
I FREE-BLK S PB . CR { PRINT S5 BLNKS, AND THE BLK #)
LOOP ELSE DROP { BLK NUMBER)
SWAP 14 SWAP DO (RANGE OF BLKS ON TOS) THEN
I RESERVE-BLK (RESERVE ALL BLKS IN THE RANGE) LOOP (CONTINGE FOR ALL POSSIBLE FILES)
LOOP ;
: BASE ! i8S
BASE ! 1S

FILE NAMING SYSTEM ~ PHH - 12 5 79) BASE @ HEX

FIND-FREE-BLK { SEARCH BIT MAP FOR FREE BLOCK)
-} FILE BLK ! { FLAG RESULT FOR NO BLKS FOUND)}
DIR O DO (NOW SEARCH ENTIRE BIT MAP) y
;FGET-BIT—MASK & 0= E ;g BLK IN USE?) LYONS' DEN (Continued from pg. 22)
1 FILE-BLK ! EXIT ¢ SO'SAQE BLK#, AND EXIT LOOP)
THEN
DROP (BIT MAP ADDR)
LOOP { TRY THE NEXT BLOCK i 1
FilE-BLK @ (DONE . S0 RETURN ME FOUND BLK) Regarding FORTH this way captures some of
ase 1 s { NOTE, -1 => NO BLKS FREE) the reasons why FORTH should not be used as
merely a low level pseudo-machine in the way
Wirth used P-Code to implement PASCAL, or as
FILE NAMING SYSTEM - PHH - 12 3 79) BASE € HEX how meta compilers, as opposed to how a meta
NEW (SET UP NEW FILE W/ NAME ON TOSS H
T LE-NAME-FIX (FIRST, FORCE VALID NAME LEN) ! interpreter works. Of course, any language can be
FIND~FREE-BLK DUP -1 = (. MORE ROOM ON DISK?) i i i
N K i e T e S used to wrltg an mterprete'r, byt FOR_TH provides
"DUP FIND-NAME -1 = { NAME ALREADY USED?) tools for this purpose built in and is thus pre-
IF 2 FILE~-ERROR THEN { YES, GIVE ERROR MESSAGE)
CREATE-NAME DUP -1 = (PUT NAME IN DIR, IF NOT FULL) structured for that kind of application. This may
IF 3 FILE-ERROR THEN { DIR FULL ERROR) H H™H H
SWAP DUP RESERVE-BLK { SET NEW BLK, FOUND BY) also SuggeSt—aSJUSt a possmlllty—why there has
{ FIND-FREE~BLK, AS RESE o i
SWAP INDX->BLK-PTR-ADDR ! { STORE FILE'S BLK POIN?;ZD)) been Observed markedly 'ess use Of Condltlonal
| UPDATE { GO TELL IT TO THE DISK, TOO !) branches in FORTH programs relative to
BASE ! ;S FORTRAN; perhaps many of the conditionals that

would be explicit in FORTRAN are simply per-
formed as executions of the interpreter functions

LNEeeTxED o T ke TEu: EXCEPT BLK POINTER) which perform a complex set of conditional
GIVEN BY ¢ ON TOS : : . . .

FILE-NAME-FIX ORCE 32 CHaR Lo n) branches automa‘tlcally without having to identify
"DUP FIND-NAME -1 = NAME ALREADY EXIST?) them as such. | will wager LISP is the same way.

IF 2 FILE-ERROR THEN
CREATE-NAME DUP -1 =
IF 3 FILe~ERROR THEN
SWAP DUP RESERVE-BLK

YES, SO GIVE ERROR MESSAGE)

PUT NAME IN DIR, IF DIR NOT FULL)
DIR FULL, SO GIVE ERROR)

RESERVE BLK, GIVEN BY # ON TOS)

ON ENTRY TO 'NEW-FIXED') George B. Lyons
SWAP INDX->BLK-PTR-ADDR ! (AND STORE BLK# AS FILE'S PTR) .
UPDATE (GO TELL IT TO THE DISK !) Jersey City, NJ
BASE | ;S

FORTH DIMENSIONS I1/2 _ Page 31

- ——=—=TOWERS OF HANO| =—=—=—

by Peter Midnight

. . . SCR # 14
Here are the listings of a graphic 0 (TOWERS OF HANOI Copyrajht, 1979, Peter Midnight)
: .) 1 PRESENCE { tower ring PRESENCE -> boolean)
representation of the ancient Towers 2 RING + C& =
3 M 3 3 3 : LINE { tower LINE =-> display_line_of_top }
of Hanoli puzzle which is adjustable 4 4 SWAP N 0 DO DUP I PRESENCE 0= ROT + SWAP LOOP DROP ;
for any CRT terminal with curser FAE
addressing. 7 : RAISE (size tawer RAISE)
8 DUP POS SWAP LINE 1 SWAP DO
9 20UP I BL DISPLAY 2DUP I 1- COLOR DISPLAY
. 10 -1 +LOOP 2DROP ;
Recently, when I got fig FORTH 11 : LOWER (size tower LOWER)
i 12 DUP POS SWAP LINE 1+ 2 DU
running on mY system under North St'ar 13 2DUP I 1- BL DISPLAY 2DUP I COLOR DISPLAY
DOS, I decided to translate this 14 __Loor 2DROP
program into FORTH as an exercise and
- . MSG # 15
as a comparison between FORTH and
PASCAL. In the process I noticed some
inefficiencies but chose to translate SCR # 15
them more or less direct]_y, for the 0 (TOWERS OF HANGI Copyright, 1979, Peter Midnight)
. 1 : MOVELEFT |(size source_tower destiny_tower MOVELEFT)
sake of comparison. 2 POS 1- SWAP POS 1~ DO DUP R 1+ 1 BL DISPLAY
3 DUP R 1 COLOR DISPLAY -1 +LOOP DROP ;
4 : MOVERIGHT (size source_tower destiny_tower MOVERIGHT)
: : 5 POS 1+ SWAP POS 1+ DG DUP R 1- 1 BL DISPLAY
The UCSP PASCAL program 1s available ¢ DUP R 1 COLOR DISBLAY Loop DROP . ;
1 ews— 7 : TRAVERSE (size source_tower destiny_tower TRAVERSE)
by requesting the Jan/Feb 1980 N 8 2DUP > IF MOVELEFT ELSE MOVERIGHT THEN. ;
9 : MOVE size source_tower desti tower MOVE
letter from Homebre.w Cc.)mPUter Club, 10 ?TEl(lHINAL 1r O R 4+ GOTOXY ABORT THEN :
P.O. Box 626, Mountain View, CA 94042, 11 ROT ROT 2DUP RAISE >R 2DUP R> ROT TRAVERSE
12 2DUP RING + 1- ClI SWAP LOWER ;
13 -->
14
15
Forth Program
SCR * 12 SCR & 16 (ah 19 Ldnigh
! urss or uawor compeiane, 1979, secer mianione R L. s R e L
! (Tranclated for speed comparison } FORTH DEFINITIONS DECIMAL 2 * 4 PICK ! = IF DROP MOVE ELSE
2 { ¥First extend Forth to inclucde a few features of Pascal) 3 SR >R SWAP 1- SWAP R> R> 4DUP SWAP MYSELF
T ¢ MYSELF (In definition, this is a recursive use of new 3 4DUP DROP ROT 1+ ROT ROT MOVE
4 LATEST PFA CFA , ; IMMEDIATE word) e ROT ROT SWAP WYSELR THEN s
S 1 GOTOXY { X Y GOTOXY) 27 CMIT 61 EMIT 5 h ’
6 0 MAX 1S MIN 32 + EMIT 0 MAX 63 MIN 32 + EMIT ; 7 : MAKETOWER (tower MAKETOWER)
o ;gifﬁscg;g’; chop I 8 POS 4 N+ 3 DO DUP I GOTOXY 124 EMIT (|) LOOP DROP ;
: Pl"\}{, SPO SWAP 2% + 8 9 : MAKEBASE (no arguments)
6 . 4DUP 4 PICK 4 PICK 4 PICK' 4 PICK 3 10 O N4+ GOTOXY N6 ® 3 + 0 DO 45 EMIT { -) LOOP ;
o RO, . . M . 11 : MAKERING (tower size MAKERING)
12 10 CONSTAUT NMAX { maximum permisable number of rings) 12 2DUP RING + 1~ C! SWAP LOWER ;
17 NMAX VARIABLE (N) ¢ N (Nj € ; (formerly a constant) 13 : SETUP (no arquments) CLEARSCREEN
13 0 CONSTANT HELL_FREEZES_OVER 43 CONSTANT COLOR (+) 14 N1+ 0 D0 1 RIne T eTct LoD T3 0 DO 1 MARETOWER LOOP
14 0 VARIABLE RING N 2 - ALLOT (array [1..N] of bytes) 15 “MAKEBASE O N DO O I MAKERING -1 +LOOP ; -->
15 ==> :
SCR 8 13 SCR ¢ 17 ‘ o
0 (TOWERS OF HANOI Copyright, 1979, Peter Midnight } o { TouERs °"(“"“°‘t.t 583{;;"?" 1979, Peter Midnight)
1 : DELAY (centiseconds DELAY) é ¢ TONERS AN T
2 0DO 17 0 DO 127 127 ® DROP LOOP LOOP ; 5 seTur N 201 BEGIN
2508, [tegataen BOS o> coordinate) 4 OVER POS N 4 + GOTOXY N 0 DO 7 EMIT 50 DELAY LOOP
5 : HALFDISPLAY { color size HALFDISPLAY) R FABOrES VLR UWIIL s
6 0 DO DUP EMIT LOOP DROP ; 3 LL_ ! ;
7 <DISPLAY> (line color size <DISPLAY>) 8 :§
9 2DUP HALFDISPLAY ROT 3 < IF BL ELSE 124 ([) 9
]2 . g};ggLicn (g}iuz‘z[)xzulwine;color DISPLAY) 10 (Results: DELAY runs much slower in Forth than in Pascal.h
R i i i tht
1 SWAP >R ROT ROT OVER - R { color size pos-size iine) i; But the rest of the program is over twice as fast in For
12~ GOTOXY R> (color size line) ROT ROT <DISPLAY> ; 13 Note that CLEARSCREEN and GOTOXY are terminal dependant.
ii "> 14 NMAX should be 10 for 16x64 or 12 for 24x80 screens.)
15 15
MSG ¢ 15
Thanks to "THE I/0 PORT", the article on FORTH by Art Sorski in their

Official Newsletter of the Tulsa
Computer Society, for the feature

April 1980 issue.

Address: The Tulsa

Computer Society, P.O. Box 1133, Tulsa,
OK 74101.

Page 32

FORTH DIMENSIONS II/2

;hl

LETTERS

I'd like to take this chance to
accomplish several aims. First, let me
congratulate Roy Martens and the entire
editorial staff for a fine puplication
in FORTH DIMENSIONS.

My interest 1n FORTH 1i1s far from
passive; 1 have been using the Univer-
sity of Rochester's (my employer, by
the way) URTH dialect for several vears
now. While at first 1 used it mainly
at home for a private music svnthesizer
research project, I have more recently
been applying 1t with success to
several laboratories within the
University's Medical Center. The
applications have primarily been
concerned with slow speed {10 to
100 samples per second) analog data
acquisition and analysis - the latter
involving the use of the AaMD 9511 IC
for number crunching (and it 1is fast
..!1). These data acquisition systems
have been described in an article which
I just recently submitted to BYTE for
publication (I hope).

While using FORTH in these appli-
cations, I have developed a set of
goals for the elimination of some of
the limitations of FORTH (there are
same, you know ...). One of the major
problems has been saving only three
characters plus the length for identi-
fiers; I have just recently implemented
changes to adopt (in URTH) the FIG
standard. Using primarily S-100
hardware, I am also now implementing a
hardward debug facility for FORTH which
allows easier program development. The
design is very simple, but allows traps
at instructions, memory references,
and/or 1/0 references. I consider this
method of debugging immeasurably more
useful than just software trapping at
each pass through NEXT.

Additional FORTH changes planned are
the implementation of a random block

text file system with variable record
length and blanks compaction. 1 feel
that this system will make it easy to
write programs in a more readable
format since this better formatted text
will use less space than the current
block oriented text editors. Thus
there will be less of a temptation to
use a short, cryptic coding style. My
method of blanks compaction is to use
the MSB of each text character to flag
a compaction count byte. When listing
a program in the editor, the compacted
blanks can be re-expanded while they
can be interpreted as blanks (due to
changes in the WORD routine in URTH)
when loading the text. Text will be
stored on disk blocks as an integral
number of lines of text per block with
each line being defined as 0 or more
characters followed by a carriage
return character.

Text will be able to span multiple
random blocks to avoid any "artificial"
program length constraints due to fixed
block size. Blocks are associated
together via a doubly linked (forward
and backward) pointer scheme while
block usage is kept track of via a bit
map (more on this later) corresponding
to the disk's block utilization. So
far the text editor has been written,
but not fully debugged. However, the
bit map and filing name system has been
written and used for several months.
I'd like to discuss them here as
the type of entity which should be
standardized for FIG FORTH usage. Let
me try to motivate this building of
file structures by analogy to building
data structures in FORTH.

IN FORTH (or at least URTH) one
can use some system features to define
any arbitrary data structure. One
which I've used recently is:

: IPARAM <BUILDS 2 ALLO7 DOES >
which might be used:

IPARAM MY-VIRTUAL-INTEGER

FORTH DIMENSIONS 11I/2

Page 33

The 1mportant things to notice 1in
this example are that the IPARAM data
type first uses standard dictionary
features to add new specific variables
- in this case MY-VIRTUAL-INTEGER - to
the dictionary. IPARAM also sets aside
some dictionary space - in this case
just one word - to store data for
MY-VIRTUAL-INTEGER. Thus there are two
important actions here - that of
linking a variable's name into the
dictionary, and that of reserving
dictionary space for a variable's
storage requirements.

The file system that I have been
evolving also achieves two analogous
actions to those above. First, it has
a way of linking a file's name into a
diskettes name directory, and second,
it has a way of reserving disk block
space for a file's sole use. Note,
that it does not concern itself in
any manner with how the file is
logically formatted. As such, it is
not a complete file management system,
but only a common protocol for various
logical file structures!

Let me explore two uses of file
types built on this foundation. The
previously mentioned text file system
logically builds a file structure
by the use of doubly linked random
blocks. But in another case, the file
is logically built up as an array
of consecutive integers in consecu-
tive disk blocks - thus linked only
implicitly. Other logical structures
are as diverse as are FORTH data

types.

In summary, what I am proposing to
be discussed and hopefully standardized
is a common structure which can be used
to name files and reserve disk space
for files. I am not suggesting any
specific file structures or formats
for standardization. I am enclosing a
copy of the source listings and some
(hastily written) documentation for

th@s file system so that it might
stimulate comments and improvements
from the public domain.

Thanks very much, and keep up the
good work. ...

Peter H. Helmers
University of Rochester
Rochester, N.Y.

In December I got tired of waiting
and implemented FORTH-65 from the
fig-FORTH model. By the end of Decem—
ber I had it up and running. This
version follows the model exactly
except for printer control, the disk
kinkage, and the inner interpreter.

The jump indirect in the inner
interpreter doesn't always work, JMP
(SXXFF) doesn't work correctly on a
6502. If a CFA ends in SFF it's

goodbye FORTH.

This bus bit after my third re-
assembly of FORTH-65. The inner
interpreter I'm now using is con-
siderably slower (60 cycles) but it is
reliable.

I assembled FORTH-65 through the
disk I/0 (SCR #69), Screens 72 through
92 reside on disk and are compiled
as needed. What I need now is the
ASSEMBLER vocabulary. Has anyone done
any work on a FORTH assembler for the
650272

SCR 044
{ RANDOM NUMBER GENERATOR E)

-

DECIMAL

0 VARIABLE SEED

: (RAND) SEED @ 259 @ 3 ¢ 32767 AND DUP SEFD ! |
: RANDOM (RAND)Y 32767 */ ; { RANGF =1 1

;S

S e QWD RN WA

J.E. Rickenbacker
Houston, TX

Page 34

FORTH DIMENSIONS II/2

sy mEaw M D«

o reerrrr— e e

HOATH IMIETSIONS

FORTH INTEREST GROUP Volume I
P.O. Box 1105 Number 3
San Carios, CA 94070 Price $5.00

NSk

35 _ Historical Perspective

Publisher's Column

36-89 Case Contest
Dr. Charles E. Eaker Bob Giles
Steve Munson Arie Kattenberg
Karl Bochert/Dave Lion George Lyons
Steve Brecher R.D. Perry
Mike Brothers William H. Powell
Dwight K. Elvey ' Major Robert A. Selzer
William S. Emery Kenneth A. Wilson

E. W. Fittery Wayne Will/Bill Busier
, David Kilbridge

90-91 Meeting Report

92 Meetings

93 Call for Papers

94 FORML Couference

National Convention

FOSTH IMENSIDTS

Published by Forth interest Group
Volume 1l No. 3 September/October 1980

Pubhisher Roy C. Martens

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
George Maverick

FORTH DIMENSIONS solicits editorial material, com-
ments and letters. No responsibility is assumed for
accuracy of material submitted. ALL MATERIAL PUB-
LISHED BY THE FORTH INTEREST GROUP IS IN THE
PUBLIC DOMAIN. information in FORTH DIMENSIONS
may be reproduced with credit given to the author and
the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth Interest Group at $12.00 per
year ($15.00 overseas). For membership, change of
address and/or to submit material, the address is:

Forth Interest Group
P.O. Box 1105
San Carlos, CA 94070

—=HISTORICAL PERSPECTIVE —

FORTH was created by Mr. Charles H. Moore in
1969 at the National Radio Astronomy Observatory,
Charlottesville, VA It was created out of dissatisfaction
with available programming tools, especially for ob-
servatory automation.

Mr. Moore and several associates formed FORTH,
Inc. in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lang-
uage, and to supply application programming to meet
customers’ unique requirements.

The Forth Interest Group is centered in Northern
California; although our membership of 1100 is world-
wide. It was formed in 1978 by FORTH programmers to
encourage use of the language by the interchange of
ideas through seminars and publications.

Busy. busy, busy. That's what its been for the last
couple of months. Here are some of the things that have
been happening.

1. We've reorganized the order processing for the
mail order items listed on the last page. The volume
has increased so much this year that we had gotten
several months behind. Now, its all being handled
at one location and we even have a phone number
for checking on your orders (415) 962-8653. If you
have technical questions DO NOT CALL, write to
the box number so that your request can be routed
to the most helpful person

2. We can now take VISA and Master Charge orders
by mail and by phone, {415) 962-8653. The charge
on your monthly statement will be listed as "Mt.
View Press”. This was done because FIG isn't set
up to handle charges. We still aren‘tready to handle
purchase orders or delayed bilfings.

3. The Augustissue of Byte magazine has put FORTH
ON THE MAP. We are receiving 50-60 orders and
requests for information a day. We have a supply of
the issue and can furnish them to you (see the Mail
Order form on the last page).

4. This issue of FORTH DIMENSIONS has 60 pages
and includes all the CASES that were submitted.
Don't get your hopes up for more FD's this long.
Next month we go back to our regular size. Congrat-
ulations to all entrants!

5. Two events are coming up soon. The FORML Ad-
vanced Conference will be held November 26-28,
1980 at Asilomar Conference Grounds, CA. The
National FORTH interest Group Convention will be
held on November 29, 1980 at San Mateo, CA. See
Page 94 for more information and to register.

My thanks to the Judges and Editorial Review Board
for all the help they have given me on this BIG issue.
without their assistance, much of it done late at night,
you wouldn't be reading this issue for months to come.
Many thanks!

Roy Martens

Page 35

FORTH DIMENSIONS II/3

==CASE CONTEST CLOSES=

This 1ssue of FORTH DIMENSIONS is
another special issue, chiefly devoted
to FIG's CASE Statement Contest. The
contest, announced in FD I/5, Jan./Feb.
1980, brought entries from sixteen
individuals and teams, showing a high
level of interest and activity among
the membership.

All the entries are published here.
They show imaginative thinking and hard
work, and illustrate the many different
ways that FORTH allows the user to
implement a single concept. Although
no one entry seemed to get it all
together, many show some very good
work.

Our panel of judges did not settle
on a single winner, but instead have
decided that the prize will be shared
among three entries. These are Dr.
Charles E. Eaker, Steve Munson, and the
team of Karl Bochert and Dave Lion.

BEach of these winners will receive a
$50 prize and a one year subscription
to Infoworld. The high interest in the
contest has justified increasing the
overall prize from the $100 announced
(including $50 contributed by FORTH,
Inc.) to $150. Infoworld kindly
donated the subscriptions.

Eaker's entry is particularly well
organized, and has a clear, readable
writeup. He implemented a keyed CASE
statement, and uses non-obvious words.
(See below for the difference between
positional and keyed CASE statements.)

Munson put so much thought into the
contest that he included several
versions, differing in the type of data
that keys the CASE statement, and in
keyed versus positional ordering of
cases,

Bochert and Lion submitted a neat
positional entry. It includes the
ability to alter the binding of cases
to case bodies after compile time.

The Jjudging was based on a variety
of factors:

1. the approach taken, including
degree of generality;

2. the success and efficiency of
the implementation, e.g., a
minimum of computation and
dictionary use should be left to
execution time;

3. FORTH-like style, including good
documentation on the screens;

4, overall prose description,
together with an evaluation of
the advantages and limitations
of the approach or implementa-
tion;

5. adeguacy and clarity of exam-
ples.

However, the judging did not involve
loading and testing the entries on a
running FORTH system,

The judges felt that most entrants
were not getting close enough to what
is possible in FORTH. They seemed to
think along narrow lines. A general
CASE implementation should be efficient
both for the positional case (where the
values tested are restricted to the
first N integers, for example, similar
to FORTRAN's computed GO-T0), and for
the general "keyed" case, where a
value, not necessarily an integer, is
tested against a sequence of explicit
values. Very few people tried to solve
both.

This collection of contest entries
make this issue of FD an excellent
source for the comparative study of
implementation techniques. Interested
FORTH students should read each entry
to pick up helpful techniques and
evaluate style. (Caution: Any entry
may also show poor technigques and weak
style.)

Forth Dimensions welcomes more
contributors.

FORTH DIMENSIONS II/3

Page 36

===JUST IN CASE

Dr. Charles E. Eaker

Even though FORTH provides a variety
of program control structures, a CASE
structure typically has not been one of
them, There is no particular reason
for this since, as we shall soon see,
it is not difficult to implement
one.

There are two different approaches
one can take to implementing a CASE
structure: vectored jumps and nested
IF...ELSE...THEN structures. Vectored
jumps provide the greatest speed at
run-time but produce enormous compiling
complications. So, taking the path of
least resistance, here is a proposal
for implementing a CASE structure for
FORTH which is really just a substitute
for nested IF structures. But, even
though the proposal is logically
redundant, there are a number of
practical benefits whicn make it worthy
of consideration.

To help this discussion, consider a
word which might appear in an assembler
vocabulary with a glossary entry as
follows:

GEN operand, opcode, mode selector —

Used by the ASSEMBLER vocabulary
to generate opcodes. 'Mode selector’
is the value which indicates which
addressing mode has been specified.
'Opcode’ is the value placed on the
stack by the preceding mnemonic, and
'‘operand' is the value to be used as
the argument of the opcode.

Here is one way of coding GEN.

: GEN O QVER =

IF DROP IMMEDIATE

EISE 10 OVER =

IF DROP DIRECT

ELSE 20 OVER =
IF DROP INDEXED
ELSE 30 OVER =
IF DROP EXTENDED
ELSE DROP MODE-ERROR
ENDIF
ENDIF

ENDIF

ENDIF RESET ;

GEN is defined to expect a 1l6-bit
number on top of the stack. For each
IF, this number, the "select value," is
copied and tested against a constant,
the "case value." 1If the select value
equals the case value the appropriate
code is executed. If all tests fail,
MODE-ERROR is executed. Notice that
GEN meticulously keeps the stack
clean.

Depending on the select value,
some action is performed on the opcode
and operand, and GEN removes them from
the stack. Consequently, before each
test, GEN must copy (OVER) the select
value, and if the test is successful,
the select value must be dropped from
the stack to expose the data values
prior to the appropriate routine being
called.

But wouldn't you rather code this
thing this way?

: GEN CASE
0 OF IMMEDIATE ENDOF
10 OF DIRECT ENDOF
20 OF INDEXED ENDOF
30 OF EXTENDED ENDOF
MODE-ERROR
ENDCASE RESET ;

It is certainly easier to see what
this routine is doing, so camments are
not as necessary, and changes and
repairs are far easier to do. Here are
the required colon definitions of CASE,
OF, ENDOF, and ENDCASE.

Page 37

FORTH DIMENSIONS II/3

TASE II0MP Jsep 3 :Cs? 4, IMMEDIATE

CF 4 ?PALRS JCMPILE QVER CCMPILE = COMPILE CBRANCH
HERE 2 , COMPILE DROP S : IMMECIATE

ENDCF S JFAIRS ISMPILE BRANCH HERE I,
SWAP 2 [JOMPLILE; SwDIF 4 ; IMIEDIATE

ENDCASE 4 TPAIRS <TMPILE DROP
BESIN 5Pd CSP 3 = (0=
WHILE 2 [COMPILE, ENDIF REPZAT
<SP i IMMEDIATE

It so happens that with these
lefinitions both versions of GEN
compile the identical code into
=ne dictionary. Let's look at the
ompiling details.

CASE makes sure that it is in a
olon definition. Then it saves the
value of CSP (which contains the
oosition of the stack at the beginning
>f this case structure) and sets CSP
aqual to the present position of the
stack. The new value of CSP will be
ised later by ENDCASE to resolve
forward references. Finally, it throws
3 four onto the stack which will be
ised for checking syntax. CASE ocom-
ciles no code into the dictionary.

OF first checks that it has been
oreceded either by CASE or an ENDOF.
If the syntax is in order, then ocode
:s compiled into the dictionary to
Juplicate the select value (OVER)
and test its equality to the current
case value (=). Next, code for a
oonditional branch is compiled into the
dictionary followed by code for DROP.
Notice that at run-time the DROP is
executed only if the select value
equals the constant for this OF...ENDOF

pair.

ENDOF first checks that an OF has
Jone before, If so, then it compiles
an absolute branch to whatever code
follows ENDCASE. However, the address
to branch to is not yet known, so a

dummy null is campiled into the address
and its location is left on the stack
sO ENDCASE will know where to stick the
address once it is known. But there is
already an address on the stack just
under the one which ENDOF just pushed.
This address was left by OF and it
points to an address that should hold a
branch address to the code which
follows the oode generated by ENDOF.
So, ENDOF swaps the addresses and calls
ENDIF to resolve the address at the
address left by OF. Finally, ENDOF
leaves a four on the stack for syntax
checking.

ENDCASE makes sure 1t has been
preceded by either a CASE or ENDOF.
Otherwise an error message 1S issued
and compilation is aborted. Code for
a DROP is compiled into the dictionary,
then all the unresolved forward
branches left by each ENDOF are
resolved. Since there may be any
number of them, including none, ENDCASE
checks the current stack position
against what it was when CASE was
executed, and performs a fixup by
calling ENDIF until the stack no longer
contains addresses left by previous
ENDOF's. Notice that all of these
branches are resolved to point to the
code after the DROP generated by
ENDCASE. In the case of GEN this is
RESET.

It doesn't take long to notice
that OF generates an enormous amount of
code (10 bytes). This is a classic
example of a situation that cries out
for a machine language primitive. If a
run-time word could be defined, let's
call it (OF), then each OF would
generate just 4 bytes two to point to
(OF) and two for the branch address.
what (OF) would have to do is pull the
top stack item (the current case value)
and test it for equality with the new
top stack item (the select value) 1f
the test for equality is true then the
next item on the stack the select
value 1is also popped and execution
continues after the (OF) If the test
is false execution branches using the

FORTH DIMENSIONS II/3

Page 38

branch value following the pointer to
(OF), and the select value is left on
the stack.

CODE (9?) A PUL o PuUL TSX
1,x 8 sts O,X A €3C ABA (=
IF INS INS ' BRANCY CEA 9 [BEX ; Il « Jnp
THEN ' BRANCH CFA 3 JMp

: CF 4 ?PA[RS COMPILE (CF) HERE 0 , 5 ; IMMEDIATE

The M6800 code listed above 1is
straightforward except that is uses
code in BRANCH and OBRANCH. (OF)
should work in any FIG 6800 installa-
tion provided BRANCH and OBRANCH have
not been altered (it doesn't matter
where they are located). Non-6800
users will have to roll their own, but
the high—-level OF should make it clear
what has to be done.

The disadvantages of this CASE
proposal are that execution is not as
fast as a vectored implementation, and
in some versions of FORTH, ENDOF and
ENDIF cannot be distingquished. These
seem minor compared to the advantages -
and there are several.

First, a CASE statement may contain
any number of OF...ENDOF pairs, and the
constants may be arranged in any order
whatever. Actually the constants need
not be constants. Between an ENDOF and
the next OF the programmer may insert
as much code as he or she likes in-
cluding code which will compute the
value of the "constant." CASE state-
ments may be nested; a CASE...ENDCASE
pair may appear between an OF...ENDOF
pair. Furthermore, there need not be
any code between CASE and ENDCASE, nor
must there be code between OF and
ENDOF. There must be ccde which pushes
a 16-bit number to the stack prior to
each OF. Finally, this proposal
follows the fig-FORTH style of handling
control structures.

fig-FORTH GLOSSARY

CASE —-- addr n (compiling)

Used in a colon definition in the
form: CASE...OF...ENDOF...ENDCASE.
Note that OF...ENDOF pairs nmay be
repeated as necessary.

At compile-time CASE saves the
current value of CSP and resets it to
the current position of the stack.
This information is used by ENDCASE to
resolve forward references left on the
stack by any ENDOF's which precede
it. n is left for subsequent error
checking.

CASE has no run-time effects.

OF —- addr n {compiling)
nl n2 --- nl (if no match)
nl n2 —— (if there is a match)

Used in a colon definition in the
form: CASE...OF...ENDOF.,..ENDCASE.
Note that OF...ENDOF pairs may be
repeated as necessary.

At run-time, OF checks nl and n2
for equality. If equal, nl and n2 are
both dropped from the stack, and
execution continues to the next ENDOF.
If not equal, only n2 is dropped, and
execution jumps to whatever follows the
next ENDOF.

At compile-time, OF emplaces (OF)
and reserves space for an offset at
addr. addr is used by ENDOF to resolve
the offset. n is used for error
checking.

ENDOF addrl nl --- addr2 n2 (campiling)

Used in a colon definition in the
form: CASE...OF...ENDOF...ENDCASE.
Note that OF...ENDOF pairs may be
repeated as necessary.

At run—time, ENDOF transfers control
to the code following the next ENDCASE
provided there was a match at the last

Page 39

FORTH DIMENSIONS II/3

OF. If there was not a match at the
last OF, ENDOF is the location to which
execution will branch.

At compile-time ENDOF emplaces
BRANCH reserving a branch offset,
leaves the address addr2 and n2 for
error checking. ENDOF also resolves
the pending forward branch from OF by
calculating the offset from addrl to
HERE and storing it at addrl.

ENDCASE addrl...addrn n --—- (compiling)
n —-—— (if no match)
—— (if match was found)

Used in a colon definition in the
form: CASE...OF...ENDOF...ENDCASE.
Note that OF...ENDOF pairs may be
repeated as necessary.

At run-time, ENDCASE drops the
select value if it does not equal any
case values. ENDCASE then serves as
the destination of forward branches
from all previous ENDOF's.

At compile~time, ENDCASE compiles
a DROP then computes forward branch
offsets until all addresses left by
previous ENDOF's have been resolved.
Finally, the value of CSP saved by CASE
is restored. n is used for error

checking.
(OF) nl n2 -=~- nl (if no match)
nl n2 —- (if there is a match)

The run-time procedure compiled by
OF. See the description of the run-
time behavior of OF.

Dr. Charles E. Eaker
Department of Philosophy
State University of New York
Oswego, NY 13126

Judges' Camments -

This is an excellent development and
presentation of a key case statement
with single integer keys. The follow-
ing features make it immediately
useful:

1. The reader can easily understand
what the statement does and how
to use it. There are only four
words to learn, theilr functions
are immediately clear from the
example presented and their
names are not confused with each
other. (The ENDOF - ENDIF
similarity will go away when the
FIG model drops ENDIF in favor
of the Standards Team decision
to use THEN.)

2. One form of the statement can be
entered entirely in nigher-level
fig-FORTH, and rur immediately
on any FIG system. An optional
code word (for 6800) with
redefinition of one of the
four higher-level words saves
run-time memory and time.
Either way, the whole statement
fits easily on one screen,
including campile-time checking.

3. The narrative documentation is
excellent. The glossary defi-
nitions are detailed (appro-
priate for this forum). For
general distribution they could
be condensed to user-only
information.

~ This entry presents one kind of case
statement out of several that are
desired. We hope that this campetent
and straightforward work will serve as
a model to future development.

COME TO FIG CONVENTION NOVEMBER 29

FORTH DIMENSIONS II/3

Page 40

—————=THE : CASE

Steve Munson

Having grown up on an ancient
version of FORTH Inc. micro FORTH, I
can appreciate the improvements ren-
dered by fig-FORTH's renames and
redefinitions. I was particularly
impressed by the source equivalence of
HERE NUMBER DROP which functions the
same although in one case one is
dropping the address of the first
non-numeric delimiter, and in the other
case one is dropping the most signi-
ficant half of a double precision
number !

My one beef is why was : made
IMMEDIATE? Surely nobody wants a
header in the middle of a colon defi-
nition. By the way, as you probably
already know, this tends to mask an
error in the definition of ; on the
listing I have for the 6502 fig -
FORTH. There is no [COMPILE] before
the [which means compile mode is never
terminated. In fact, I am not sure I
see the point of the E property in your
glossary. All words ought to be
designed, at great pains if necessary,
so that they can be compiled. My
definition of CASE denies the E pro-
perty of :, and I would be rash to
assume no one would ever want to
compile CASE.

Please find enclosed a listing,
documentation, glossary entries, and a
diskette. The diskette also contains
the assembler used to generate the
code, as it may be nonstandard If the
fig-FORTH does not run on your system
as it does on mine, feel free to edit
my ideas into polished f£ig~FORTH (I am
a novice figger) and re-list the
screens; however 1 believe they will
require no modification.

GLOSSARY ENTRIES

Z2BYTECASE

Keycase defining word, used in the
form:

2BYTBECASE cccc key case | key
case, . ., . keyn case (defaul%
case END-CASE. " Definef cccc as a
caseword which expects a 2-byte key
on the stack at run-time. If the
key equals keyo (a 2-byte keyj,
case (a previously defined word)
will execute; if it matches key
case, will execute, and so On.
The]default case will execute
on no match; if no default is
specified, NOOP is assumed. Cases
may be IMMEDIATE words, but no
campile-time execution will occur
within the case structure. The
structure must be terminated by
END-CASE. ({See END-CASE, BYTE-
CASE).

BYTECASE

Keycase defining word, used in the
form:

case . key n casé_ END-CASE:

Defi&es ccce asa casBword which
expects a l-byte key (most signi-
ficant byte 1s ignored) on the
stack at run-time. If the key
equals key_ (a l-byte key), case
(a previoé@ly defined word) will
execute; if it equals key, , case,
will execute, and so 6n. Thé
default case will execute on no
match; if no default is specified,
NOOP is assumed. Cases may Le
IMMEDIATE words, but no campile-t.ime
execution will occur within the case
structure. The structure must b«
terminated by END-CASE. ‘Sae
END~CASE, CASE).

BYTECASE cccc key case key1
E

Page 41

FORTH DIMENSIONS 11,3

CASE

Case defining word, used in the
form:

CASE cccce caseo case e e e
case {default case) ENJD-CASE.
Defides cccc as a caseword which
expects a l-byte key (most signi-
ficant byte is ignored) on the stack
at run-time. If the index is 0,
case (a previously defined word)
will execute; if index is 1, case
executes, and so on. NOOP case
must be inserted for unused values
of the index; index limit is 65,
535. No protection is made for
out-of-range 1indices or stack
underflow. CASE remains in compile
mode (by calling :) until termi-
nated by END-CASE. (See END-CASE).

DO-2BYTECASE P, C+

Campiles a reference to the run-time
procedure of the same name, a
two-byte "exit address", a one-byte
case count and case structure
identical to that of 2BYTECASE, all
inline within a colon definition.
Used in the form: : cccc optional
words DO-2BYTECASE key_case
key, case, . . . key case (de9
faullt caJSe) END-CASE o&ional
words ; . The keys, cases and
run-time activity are exactly as
described for 2BYTECASE. (See
2BYTECASE, END-CASE).

DO-BYTECASE P, C+

Copy glossary entry above, substi-
tuting BYTECASE for 2BYTECASE
everywhere,

DO-CASE p, C+

Campiles a reference to the run-time
procedure of the same name, a
two-byte "exit address", and a case

structure identical to that of CASE,
all inline within a colon defini-
tion. Used in the form: : cccc
optional words ; The cases ard
run-time activity are exactly as
described for CASE. (See CASE,
END-CASE) .

DO-STRINGCASE p, C +

Copy glossary entry for DO-2BYTE-
CASE, substituting STRINGCASE for
2BYTHRCASE everywhere.

END-CASE P

Universal caseword delimiter. It
has no run-time activity, but at
compile-time it may fill in an "exit
address" (inline caseword), and/or a
case count (keycaseword), or termi-
nate campile mode (CASE, inline CASE
for QODE definitions).

STRINGCASE

Keycase defining word, used in the
form:

STRINGCASE cccc key case
key, case, . . . ke case_ (de-
fauit cas&) END—CPYéb. D2fines
cccc as a caseword which expects a
byte-string beginning at HERE 1+
with a count of them at HERE (typi-
cally fetched by WORD) at run-time.
If the string equals key_(any
byte-string of 1 to 255 charagters),
case_ (a previously defined word)
will” execute; if it equals key.,
case, executes, and so on. The
defaellt case will execute on no
match; if no default is specified,
NOOP is assumed. Cases may be
IMMEDIATE words, but no campile-time
execution will occur within the case
structure. The structure must be
terminated by END-CASE. (See
END-CASE) .

PORTH DIMENSIONS II/3

Page 42

Explanation of Screens by Number

100-102: To enable the loading of a
screen, delete the leftmost paren-
thesis. For all screens above 108,
109 must be loaded. Some screens
load others that they require, hence
loading all screens will cause some
to be loaded twice. If it is not
desired to load all the examples,
edit DECIMAL ;S on the same line
of any screen in which the word
(EXAMPLE) appears on a line by
itself.

103: END-CASE is an example of a
terminator (or a leader, or any
structure) that is common to all
members of some group (in this
instance, casewords). The structure
can be identical for all members of
the group only because 1t behaves
slightly differently to each of
them. END-CASE accomplishes this by
following a binary tree. At each
node a flag variable is tested and
code common to the branch taken is
executed. All members of the group
(each caseword) must set or reset
the flag variables that must be
tested to complete the execution of
all their compile-time code.

END-CASE must be expanded for each
new class of casewords that use it
as a common compile-time termina-
tor. This is done by creating a new
flag variable that is 1 only for
members of the new class. The
affected casewords are then amended
to set or reset this variable (at
compile-time) depending on their
membership in the class, and the new
variable is tested in END-CASE. So
far, I have included only two
classes: the unique, indexed CASE,
and the keycasewords. Each is
further sub-divided into defining
word and inline forms. Note that

STATE can serve as a flag for this
distinction, providing that the case
defining word executes outside of a
colon definition, and the inline
form does not. Instead of using a
binary tree (nested IF tests) with a
new flag variable required for each
branch, consider using a caseword
inside END-CASE, 1itself, to accam-
plish an n-way branch based on the
value of a single variable!

105: CASE is the simplest form of
n—way branch. It compiles a string
of consecutive codefield addresses
(CFA's) exactly like the parameter
field of a colon definition. Tie
on line 3 creates the header and
sets compile mode, END-CASE termi-
nates compile mode. Whereas the
CFA's in a colon definition execute
sequentially, only one CFA will
execute each time a CASE is called.
It expects an index on the run-time
stack; 1f it is 0 the first CFA
executes, if is 1 the second CFA
executes, and so on. No protection
is made for out-of-range indices.
Credit for the basic form of CASE
goes to J. B. Weems, also of Hughes
Aircraft, Fullerton.

106-107: Each caseword is presented
in three forms: a ;CODE defining
word, a <BUILDS DOES> defining word,
and an inline version. The inline
version is perhaps closest to
ordinary usage, the <BUILDS DOES>
defining casewords are machine
independent and easiest to modify,
and the ;CODE defining casewords
are, in all cases, the fastest.
This is because they take advantage
of the available system pointer W
(which is set by NEXT) in crder to
index into the parameter fieid of
the case structure; whereas the
inline casewords must move IP bewvond
the case structure after using it to

Page 43

FORTH DIMENSIONS I1/3

select a case. Note that the inline
casewords are not defining words,
and so do not require an auxiliary
name for the case structure.

The method of putting the CFA to be
executed into W and jumping to
the last half of NEXT (which fetches
the code address and puts it into
the program counter), 1s based on
the word EXECUTE as a model. The
"NEXT 6 + JMP" used here is source
truncation for space purposes. It
assumes that no insertions are made
in the beginning of NEXT (an inser-
tion in NEXT might be forgivable if
short and forbidden to execute at
run-time, or if turned on momen-
tarily by an EXEVAR). In such a
case, the safe thing (and in any
case, the fast thing) to do is to
copy the code for the last half of
NEXT (however 1t appears on your
machine), rather than jumping to
it.

108: A curious hybrid of high-level
inside a CODE definition. DO-CASE
is really a macro that compiles code
similar to that executed by the
inline version. Note that if the
stack is 0, and DO-CASE executes
one of the cases, execution will not
return to 3TEST, but to the word
calling 3TEST (that is, the HPUSH
JMP will not execute). There is no
danger of name confusion because the
two DO-CASE's are in separate
vocabularies.

109-110: A keycase is so called
because it requires a key associated
with each CFA in the case structure.
A key of the same type must be
supplied at run-time. If a matches
a key in the caseword, the associ-
ated CFA will be executed. Unless a
match 1is guaranteed, a default CFA
is required which is executed on no

match. The default may be a NOOP, a
pop of the parameter stack, or even
a link to another caseword. The
default case is optional, if none is
specified, ,CFA campiles a reference
to NOOP, automatically.

The structure of a keycaseword 1s as
follows:

COUNT KEY CFA KEY CFA
© © dlefault
. o s KEY CFA CFA
n n

where count is the number of cases
(default excluded), and CFA_ is the
CFA that will be executed” if the
run-time Kkey matches KEYO. The oount
is not supplied by the programmer; it
is determined automatically by ,KEYCASE
by counting the number of cases till
END-CASE at compile-time. The HERE 0
C, on line 13 reserves space for the
count, and it is filled in by END-CASE.
The 1+ after the BEGIN on line 14 is
incrementing the case count on the
stack. The compiled count will be
picked up at run-time to become a DO
[OOP index. When the index runs to
0, it indicates that the list of
cases is exhausted, and the defualt
address is to be followed.

Just under this count, on the stack,
is a flag that indicates whether the
programmer has not supplied a default
case. It starts at 0 on line 13, may
be changed to 1 by line 4, and is
tested on line 11.

All of the keycasewords, as written,
reserve only one byte for the count of
the number of cases. Hence, one is
limited to 255 cases per case structure
(0 is not allowed, either). However,
keys need not be consecutive or ordered
in any fashion, as are the indices for
CASE. Keys may be 1, 2, or n bytes
depending on the kind of caseword;
CFA's are 2 bytes.

PORTH DIMENSIONS II/3

Page 44

In addition, 1inline casewords
compile a 2-byte address in front of
the count. This "exit address"
points to the first byte beyond the
end of the case structure. This
address 1s put into IP so that exe-
cution may resume after a case has
executed, Case defining words do not
need this because IP already points
correctly; W is used to scan the case
structure.

The 1 = IF on lines 1 and 9 is
testing for NULL (alias X). NULL
cannot perform its usual function of
resetting IN, incrementng BLK, and
terminating the loading of a screen.
The reason is that ,CFA uses ' CFA ,
which is capable of compiling a refer-
ence to even an IMMEDIATE word. This
has the advantage that an IMMEDIATE
word can be called as a case, but no
ocompile-time execution is permitted in
the middle of a case structure. Lines
1 and 9 perform part of the definition
of NULL if one is detected. Not that
the test assumes 8080 byte order;
on some machines, the test for NULL
would be 0100 = IF. 1If, on your
system, a block equals a screen, all
the testing for NULL may be deleted.

+KEYCASE is designed so that one or
more keys, CFA's, default, or IND-CASE
may be on any given line. A key need
not even be on the same line as the
associated CFA. Do not skip lines in
the middle of a case definition. Keys
and CFA's must alternate, the exception
is the default CFA which has no key.

+XKEY on line 7, is a dummy which is
called by ,KEYCASE where it reserves 2
bytes which will be filled in at
compile-time when a particular caseword
executes (lines 8 and 9 on screen 111,
for example). The CONSTANT ,XKEY-ADDR
defined on line 6 is set to point to
the two bytes reserved in ,KEYCASE so

that a reference to a ,KEY appropriate
to a given keycaseword may be stored
there (by !KEY , for example). A more
elegant solution, beyond the scope of
this document, would be to make ,XKEY
an EXEVAR , a variable whose value 1s
assumed to be a CFA, and which 1is
executed rather than fetched. !lKEY ,
12KEY , etc., would then be used to set
the EXEVAR to ' ,l1KEY CFA or ' ,2KEY
CFaA.

NOWSAVE and RECOVER are needed
because by the time END-CASE is encoun-
tered, one has typilcally already
compiled the default case as a key
instead of a CFA. This is because it
breaks the pattern of KEY CFA , KEY
CFA. And in any case, 1n order to
recognize END-CASE, we must advance the
input pointer beyond it, and it i3
convenient to restore it so that
END-CASE can execute and perform 1its
compile-time activity. RECOVER is,
then, a way to un-compile and un-
interpret what has been done.

The endless loop of line 14 1is
terminated by the R> DROP on line 10
when END-CASE is encountered. This
assumes that ,KEYCASE will always call
,CFA directly.

111: Line 10: BYTECASE is a typical
8080 ;CODE defining word. "HEADER
{1KEY ,KEYCASE" is the compile-time
activity, and the macro RUN-BYTECASE
compiles the run-time code. The
run-time code must leave W pointing at
a case CFA or the defauit CFA, and then
execute that CFA,

Warning: if your ASSEMBLER does
not specifically define BEGIN as HERE
(non-IMMEDIATE), then vou will fall
through the ASSEMBLER intoc FORTH and
find : BEGIN HERE ; MMEDIATE. This
version will not work in macros,
because you want to campile a reference

Page 45

FORTH DIMENSIONS I1/3

to BEGIN that will execute when the
macro executes.

Note how simply each key is paired
with the word to execute upon matching
the key (32 TWO, for example). The
only punctuation needed is spaces (the
number of spaces 1s not important).

112: It 1s interesting that STEST does
not behave exactly like 4TEST. They
are designed so that pressing the
terminal key "0" selects ;S to be
executed. Because <BUILDS DOES> is
high-level, 1t has an extra level on
the return stack; hence, the endless
loop on line 13 does not exit, but
screen 111 returns to the terminal with
"OK".

Calling the colon definition "R> R>
DROP DROP" from 112 would have the
same effect as calling the code ;S from
111,

113: Note that the inline code is 6
instructions longer than the run-time
code of the defining word. These
instructions pick up the "exit address”
which was given space at compile time
by the "HERE 0 , "on line 7, and
filled in by END-CASE.

114: same idea as 111, but a two-byte
key is expected on the stack. The low
byte is in L and high byte is in H.
Compare the "," on line 12 with the
"C," of 111 line 8.

115-117: Self-explanatory.

118: Stringcase uses variable-length
keys (up to 255 bytes). At run-time it
expects bytes beginning at HERE 1+ with
a count of them at HERE. It will match
this string against its keys, executing
the associated CFA if a match occurs.
There is no restriction that the bytes
must be printable ASCII, but you may

find it hard to edit anything else into
a screen. Source numbers may be used
as keys, but they will be treated as
character strings; the run-time is also
a byte string, it 1s not normally
placed on the stack even if 1t 1s a
nunber .

The run-time code has two loops.
The outer one 1s counting down the
number of cases; the inner one has an
index equal to the byte-count of a key
plus one (the count, 1itself, is cam-
pared). Saved on the stack is IP and
the address of the next key in the case
structure (computed from W plus the
byte-count plus 3)

119: One application of STRINGCASE 1s
as a campact language translator. The
string key is the input word, and the
word executed by the associated CFA is
the translation. Such an association
is faster than a colon definition
equating the two, because IP is not
saved on the return stack, or restored.

The cases of a stringcase constitute
a sort of vocabulary, but the structure
is more compact than an ordinary
dictionary because it lacks 1link
fields, code fields, and terminators.
The arithmetic that advances W from one
case to the next is almost as fast as
following a dictionary 1link, and the
code for RUN-STRINGCASE compares
favorably with (FIND). It is hard to
imagine a FORTH - like language trans-
lator that would be faster or more
compact.

120: High-level version of 118. The
two nested loops are still there as DO
LOOPS, the address of the next case is
saved on the return stack between the
loops, and the two pointers to the two
byte-strings are on the parameter
stack.

12]1-122: Self-explanatory.

FORTH DIMENSIONS II/3

Page 46

123: The word called by the default
case is exactly like INTERPRET except
that is does not need to do a BL WORD
because the string is already at HERE,
and it is not an endless loop (so that
it INTERPRET's only one word}.

GERMAN 1s, then, a STRINGCASE that
will, first, attempt to translate a
word, but if it 1s not in 1its vocabu-
lary, it will INTERPRET it normally.
The endless loop taken away from
INTERPRET is given to TRANSIATE which
is then substituted for INTERPRET 1in
the definition of LOAD (1t could also
be substituted in the definition of
QIT).

If one now loads a screen with
TLOAD, it should compile normally, with
the addition that EIN, ZWEI, and DREI
will be understood as re-names, and
executed immediately. In order to be a
true translating interpreter, the DOES>
part of STRINGCASE must obe extended to
respect compile mode by testing STATE,
and either compile the CFA or execute
the CFA, depending.

Note that ;S calls itself as a
case. This is not only a way to find
;S, the interpreter would not stop at
either ;S or NULL {it would, of course,
stop at an undefined). The reason is
that there is not an extra level on the
return stack (namely, TRANSLATE)
between the equivalent of LOAD (TLOAD),
and the equivalent of INTERPRET
(DEFAULT) . Hence, executing ;S from
DEFAULT is sufficient. to end the
execution of GERMAN, but not of TRANS-~
IATE (which will inevitably call GERMAN
again). However, calling ;S as a case,
since it is a CODE definition, will end
the execution of TRANSLATE, and return
eventually to the terminal with "OK".
But if one had used the <BUILDS DOES>
version of STRINGCASE, there would,
again, be an extra level on the return
stack, and ;S would again fail. In
this case, ;S would have to call a word
whose definition is R> R> DROP DROP
(see explanation of screen 112).

Another possible kind of keycase
might be called BITCASE, where the key
is a mask, and the associated CFA
executes if the mask AND'ed with the
value on the stack ¥ 0. The flag
variables and compile-time code would
be identical with BYTECASE; the run-
time code would simply do an AND
instead of an XOR, and a 0 = NOT
instead of 0 = . The casewords
presented here by no means exhaust
the possibilities. The structure
is deliberately left open-ended to
encourage user creativity.

Note that BITCASE, BYTECASE, 2BYTE~
CASE, and STRINGCASE all differ in
name-length to avoid confusion on
WIDTH-3 systems even when prefixed by
DO- or RUN- .

Keycases have the property that they
can be chained together through their
default addresses (the key can be
changed at this point, as well). This
makes possible complex, high-level
sturctures in which casewords feed
other kinds of casewords. This is a
tree with n brances at each node (a
pattern similar to human brain cells).

With two default CFA's one could
put keycasewords into 2-link structures
such as binary trees. Furthermore, any
CFa, including the default case, can be
an EXEVAR (see explanation of screen
109), allowing the structure of the
tree to change dynamically at run-time.

S Steve Munson
linghes Aircraft Campany
Fullerton, CA 92634

-

Judges' Comments - An interesting ap-
roach to error control, by making :
IMMEDIATE a part of error control. If
a preceding ; is missing, due to mis-
editing, : will be encountered in com-
pile mode. It executes but contains
?7EXEC, which produces an error message
if compiling. A little confusing but
it works.

Page 47

FORTH DIMENSIONS 11/3

100 107
CLIRD ICFEEN LOALER FOR CATEWIRD IELECTION 9 ¢ IN-LINE CAZE WIRD ! HEX

. FORGET TAZh Thd 1
2 2 CODE DO-CASE TP N w0, IF 1+ L MV, COPID LR ZXTT ADDE

: 123 LOAD CENT-C y] M IF 1+ MOV, M INX, ™ iF My, ¢ MTE IF ZE ONT END-CAIE)

310 LDAD COWADRDE FOR P E(TAIEWORD COMFILING) fOLOADT th a XCHG, W POP. N DAD, W INX, W DJAD, CH o= W+ 2e IFFIETY
- s MW o1+ MOV, HOINY, MW MOV (CODE FIELD ADDR INTO W

S 4 101 LOAD ¢ LOAD CREEN W1) & XCHG. MEXT @ + MF ¢ JUMF TO LALT HALE OF NE'T)

T 102 LIAD CLIAD TCREEM ¥2) 7

R 3 DO-CASE ~FEYUAZE +INLIMNE ! HEFE O LEAVED)

: Q COMPILE DO-CRASE MEFE 0 . . [MMEDIATE &P END-

1 19 COFILLI DT M
3 11 (EXAMFLE
1l 12 ONE L . Twdy 2 THREE 3
i 13
‘3 14 2TEST O pO-CATE UNE TWO THFEE END-CASE 3
[1S DECIMAL 3
PIIRE LGRS RIS T IRER BT U A ISR I IR T RTS I I H AR RRR RN » FE LT EI R R R R N L R L RS LR NS4
101 1
C LIRAD ICREEM #1 FOR IATEWCRD ZELECTICM o (IN-LINE CAZE FOR SGDE JEF INITINGG HE ¢

1 1 ASSEMELER DEFIMITIONS
20 10% Wen 5 WORTH 2 . DO-CAZE MERE 0 - W LXI. (WDAD W WITH SO ZEVOND LeiT

TluA LRD ¢ CTATE CEFINING WORL) 3 H POF. H D&l W TAD ¢ BYTE OF THIT MA . aph I

4 L0T LDAD 4 o 4 MW L+ MY, H OIMYX. MW MOY, (INCEX N STwelk . FETCH IFG
< LOLTAD ¢ TODE CEFINITIONS . s XCHG, NEXT & + .MF, (JUMP T LATT “ALE IF NE-T

B & ~KEYCASE -INCIME SMUDGE 1 . SET FLAGS AHD COMPILE MOCZ

R S SE DEFINING WORDH 7 FORTH DEFINITIONS

ES CLIOLTARD L CTUILDY [E EYTEL OEFTIMING IR 2

110 LOAD IN-LIMNE ZYTETAZE WORDD ¢ LOADD 11 9 (EXAMPLE
10 ONE 1 i Twr 2 THFEE = .
113 LDAD (‘;‘vTE"A E ‘E‘:!NINI i L aTs) G & S 11 ’ 1
vl S LTAD € 12 CODE ITEST H SOF. L & ™MV, H IFE. L 0
[LlaD o Ll 13a) 12 O= IF. DJ-CAIE ONE TWO THEEE END-CASE
B H 14 DECIMAL . £
LT 15
A AR AR PR ENEEI LA EENET SIS RS R DL L2 RS AR R Sk T T LS LE] L R R R R T T e S E R R L LS EE L
1Oz 1
oAl TORESH #1 FOR TATEWDRD CIELECTION [} { WORDS FOR ¢ EYTATEWIRD COMEIL ING HE X
1 O YARIAELE OLDMERE o JARIAELE OJLDEL: 0 C/ARTABLE DIN

N LRI = 2

. LA CFINING WIFD 2 . NOWSAVE HWERE IJLOHEFE ' BULY 2 JLDELY * * CLOIN
4 LOAD < : 4 RECOVER OLOHERE 2 DF ' OLDIN 2 IN ¢ 2 ELb
PR s
H & . *NUMEER -1 UFL ' 9 O HERE DUF 1+ <2 D =
’ 7 DUF R + (NUIMEER) DROF DRICF Rl IF MIMUIT ENDIF

K 7 HMEADER CREATE 3MULGE
1o 16
H 11 * ~FIND = O TERROIR IR 1 WITHOUT LITESLL -
12 12 DECIMAL --

17 i3
14 14
[1%
ARBLABERLIDES A TN RN +rae
12O 11

o { END~CATE) WEC o (WIORDS FOR KEYCASEWIRD COMPILING. CONT. 7 HEX

LY UARIAZLE “INLINE O VARIAELE “KEYLASE t . TEY ~FIND MHEFE @ { = IF 1 3LF +' O IN! ¢ IF NULL

- 2 NOWSAVE DROF DRCF DROF —FIND ENDIF ¢ SET NEXT ELOICH, ZAVES

3 eIMUINE o “INLINE ! 3 IF DROP END~11AS! °F ¢ NEW ADDR. EMD- "

d +HErCATE o CFEYCALE 4 SWAF 1+ SWAP RECCVER ENDKF ENDIF . ¢ ET NO-DEFAULT FLAG
<

: S

: END-CASE IWEF O { UUNIVERSAL & O CONSTANT , XKEY-AODF { ADLR OF . XFEY IN FEYCAIE)

b ITATE 2 z EMIIF ELIE ¢ CASEWORD ! 7 © XEEY MNERE O . . AEY-ADDR IMMEDIATE (ET . Xi Ev-ADLR)

L CINLINE 2 IF 4EFE ZWAP ' ELIE IMULGE « DELIMITER)]

3 MEILE] € ENGIF ENDIF IMMEDIATE © . ,IFA %" MERE @ 1 = IF | LY ¢! O IM ' OROF s (FUT a)
v 1¢ EMDIF DUF © END-CASE = IF RECOVER RI DROF ORGP (IF~ I
1 1 SWAF IF < NOOF ELTE < ENDIF ENDIF OFR . . (A AIE)
2 12
v 13 .KEYCASE +KEVZAZE HERE 0 €,

4 13 ~1 BEGIN 1+ MOWSAVE “HEY L XVEY L IFA AGAIN
vs 1% DECIMAL .3
vaa . .
1D 111

' ' = DEFINING WOFD © HEX 0 (BYTECAZE DEFINING wORD. { ONE-BYTE :EY3 ° HEX

! 1 ASSEMELER DEFINITIONZ
2 CASE - EYCAZE ~IhLIN ¢ SET FLAS VARIAZLES z Ruu-»rrslny- M OFOP, W INX. W LDAK, A H MIV. W INY
2 IoOMe ILE) SLODE ¢ BEFINE CAZE : 3 SESIN, W LDAX, W INX. i« (RA, 0= NOT IF, ¢ OMALFD USED)
2 M P, M DAD, W OINY. W 6D, S WOED IR THDER a W INX, W INX. M DCR, THEN, o= END, ¢ N LINE 102
TN W ope Oy, HOINX, MW MOV BuT rFa INTO o L s XCHG, M W 1+ MOV, H ING M W MOV €% R 11D,

: (WCHE, MEXT & + UMF, { ~AET 9aLS OF NEUT) B XCHG, NEXT & =+ umF, . FORTH DEFINITIONS {LINE 3 g
K 7

B ¢ EXAMFLE S . 1LEY eNUMEER C, ¢ COMPILE A 1-EYTE 'EY)

ONE 8 . Ta 2 . TRREE % k1 V1KEY L 1IKEY FA L XKEY=ADDR ' ., ¢ PUT . IFEY IN PECRIE
LY 10 - BYTELASE HEADER ‘'1HEY . KEVLAZE , COLE RUM-BYTECAIE
il OTARE FICK DME TWO THRREZ END-CASE 1 ¢ EXAMPLE >
12 [TWO 2. THREE 3 . DEFAULT 2
o PICK 3 . D] SRINTS O 1 3 13 BYTECASE IHOW
K 1 BRINTE O 2 3 ta 31 ONE 30 , 3 32 TWD THREE DEFAILT EMT-CAZE
¢ 2 OTELT FRINTE & 3 4 1% ¢ ATEST BECGIN KEY SHOW AGAIN . DEL IMAL
AL T T * * Eal o o A 4 R * *
1O 11z

X ¢ IBUILDS DOESD CASE DEFINING WOAD « HEX 0 (<BUILDS DNESY BYTECASE DEFINING WORD * hEX
: 1 . L 1FEY #NUMEER . « COMPILE & (-EVYTE vEv)
s CAZE CEILDS - EYCAZE -INLINE] € ADD INDEX TO SFS. 2 . '{KEY ,1REY CFA , XEE?=ADDR ' . ¢ FUT . LKEY IN . HEYCRIE;
3 DDEZ> OVER + + 2 S(ECUTE . ¢ SET CFA, EXECUTES 2
2 34 BYTECASE <BUILDE '1nEY . KEYCASE DOES!

s ¢ EXAMFLE s DUF 0@ O D0 i1+ OVER OVER (@ = IF ¢ HIGH LEVEL DREd
s ONE 1, TWO 2. THREE 3 5 LEAVE ELZE I+ ENDIF LOOF € ZAME THING A%
N 7 SWAP DROP 1+ @ EXECUTE ¢ CODE ON
3 TAZE PICE ONE TWQ THREE END~CAZE s
2 ? { EXAMPLE
> ITEST D FICi & 10 i ™o 2 THREE 3 DEFALLT 4
t DECIMAL 3 1 € +SHOW
- 12 30 i3 3L TWO 3T THREE DEFAULT SND-CAsE
o 13 BEGIN KEY #SHOW AGATH
3 14 DECIMAL : %

FORTH DIMENSIONS II/3

Page 48

113= 119
2 { IN-LINE BYTECASE WIRT) o C STRINGCAZE DEFINING WORD., CONT HE X
1 111 LOAD HEX '
2 2 hrEY WERE C® 1+ ALLOT . CCOMPILE A ITRIMG E.
3 CODE DO-BYTECAZE IF H Mow. IF 1+ L MOy M [P 1+ MO, 5 CIrEY L AKEY CFA X EY~SDDR BT LI EY M L REYCATE”
4 HOINX, M OIP MOV, XCHG, FUN-EYTECASE ¢ EE MACKRO 111 3
3 5 STRINGCAZE HERDES 'SLEY . hEYCZAZE CODE RUM-3TRINGCAIE
= O-CYTECASE L3
? COMFILE DO-BYTECAZE HERE 2 TIVEY L PEYCAZE . IMMEDIATE b « EXAMFLE
8 5 ONE 1 T 2, THREE 2 CEFAINLT =
2 ¢ EXAMFLE ¢ DECIMAL {27 LOAL S
10 ONE TWa 2 . THREE = nMEFALLT 2 STRINGITATE GERMAN
it c EIN TONE 2WELD TWD DFET TNREE [DEFAAT END-CAZE
b HEY
3 .3 TESNILATE EL WORD GERMAN ¢ O TRANTLATE EINT ERINTZ 1o
13 ZECIMAL L B
-
- L2 - R Rl L L R R e R R L) BALP RIS I FRFRE I TR S P EIDPAF IR HRFT AP LTI IIL A INR ST IR A4 RRIAIII I IR 4
114 120D
a ¢ ZEYTECASE TEFIMING WORD, « TWI-LBYTE - EV: O ¢ IEMILDS DOUED: TE CEFINING IR HE X
1 ASSEMELER DEFINITIOME 1 VEY HWEKE T2 1+ ALLOT LOMEILE & STRING VE:
2 RUM-2BYTECAZE W FOF, [F FLEH. 2 CSLEY LSKEY CFA L XFET~AOIR ! ¢ oENT L ZTEY IN L KEVCATE.
i WOINK W LRAX. A IF MOV, W INX. ¢ 3
3 FEGIN, W LDAX. W IM/, L (RA, O= IF. 4 STRINGLAZE EUILEE 'S EY L LEVCASE DOES
b W LDAX, WOTNK H YR, 0= NOT IF. S . HERE WEFR 1+ ROT (@ oG (w8 OF
& W IMNX, W INY, IF [k, THEN, ELZE, 3 DUF [P (2 + 7 » PUE 22 1+ O 2 ‘
7 W OINX. WO INX. W INX. [P DCF, THEM. 7 OVER £2 QUER £@ = IF 1+ IWAF 1+ TWAF MPAFE B TS
2 Q= END, 1P POF. & ELIE UROP DROF WERE 0 LERVE ENDIF LOOF e
< ACHG MW te OV, HOINX. M9 MOy, < IF R> DRCF LEAVE ELIE ODFIF &1 ENDIF il
19 KCHG, NEAT & + IMP. FORTH DEFINITIONG 10 Lo AP DROF @ CXECUTE ‘)
1: 11 DECIMAL
12 NUMEER . ¢ COMEILE S Z-TYTE +EY 12
13 Y . JLEY CFA LT vEY 1N ErlAZE 1z
14 TECRIE HEIDER SyTEAIE 13
15 JECIMAL B 1%
LA et + Y - IR 4R T T L T L R T T T
=1
¢ ZBYTECAIE DEFTINING WiIRD, TOMT HEY 5] WORD, JGNT SE
¢ TELT FOR ICFEEN :id) 1
{ EXAMFLE Z « EXAMPLE)
3 ONE 1 TRWO 2 THREE 3 TEFAULT & 3 GME 1 Twoo 2 THREE CEFALLT 94
4 3
S IBYTECALE 7RI0) = STRINGCAZE GERMAN
o 0111 ONE 0ZIZ TWO THREE CESLT Py EIN ONE IWED TWI CORE[THREE DEFAULT ErD-C
7 7TEIT b 2 L S S 7
% DECIMAL .3 3 TRGNSLATE EL WORD OERMAN
4 * DECIMAL LR
¢ Tl
11 11
1z 1z
33 13
13 13
iz 12
» - e s
114) Qegord
2 ¢ CIBJILDE DOES> 2EYTECASE DEFINING WORD HEX Q { IN-LINE 3TRINGCASE WORD
1 . 2FEY eNUMBER . ¢ TOMPILE 3 Z-BYTE VEv) { 112 LOAD HEX
2 t2A EY » 2KEY CFA , XKEY-ADDR ' O PUT L 2KEY IN LVEVIRIE) =
3 3 CODE DO-STRINGCASE 1P H ™I IF f+ L w0V M IF 1a MO
4 ZEYTECAZE “BUILDS '2MEY L KEYD DILES: ! S THING 4 4 OINA, M OIP MOV, XCHD, BUN-ITRINGCALE ¢ IEE MACRI 3
S DUF 1+ ZWAFP 02 O D JVER QUES @ = [F ¢ ald <
& 2+ LEAVE ELTE 3 + ENDIF LOOF C COMPARRET BOTH 5 DC-STRINGCAZE
7 TWAF TROF @ EXECUTE ¢ BYTES AT ONIE ? COMFILE DO-3TRINGCALE HESE VIVEY LEYCAZE IMMEDIATE
¥ { EXAMFLE = t EXAMFLE
10 ONE 1 TWO 2 THFEE I, DEFARULT 3 10 ONE Ot THY 2. THREE 3 DEFALLT 4
i 11
1l 2BYTEZAZE ZRICK 1D TREMZLATE BL WORD DO-STRINGCAIE :
i3 OLL1 ONE ¢ THREE DEFAULT EMD-IASE 13 EIN ONE IWE] TWl DRE! THFEE DEFAULT ENL-0ais
14 STEST < 18 DECIMAL .3
1% JECIMAL .3 1%
bk s et ‘e B R N T L R L R R
117
s O IN-LINE ZBYTETAZE WiOFD o (EXAMFLE oOF A TRANILATING INTEFFFETER HE ¢
1 114 LDAD HEX 1 DEFAULT HERE CONTEXT 2 @ (FINDY TP = IF ¢ = JMTESFTET.
2 pd DRIF HERE LATEST (FIND: ENDIF COATTHGUT 2 RUM
I DOLE DO-ZEYTECASE IF M MOV, IR 1+ L MOV, M OIF 1e MO 3 IF STATE @ - IF CFA . ELIE CFA EXECUTE ENOIF e
4 HOINK, M OIF MOV, XCHG, RUN-ZBEYTECAZE (ZEE MACRD a ELZE MERE MUMEER [PL 2 1+ IF (COMPILEI TLITEFAL AL
N S ELSE DROF (COMFILE] LITEFAL TETACH LAy o
& DO-2EYTECAZE & ENDTF DL owCED -
7 COMPILE DU-IBYTECAZE KERE O . 'IHEY L REVE IMMEDTIATE T
s & STRINGCASE GERMAN
2 ¢ EXAMPLE ° EIN ONE IWE] TW3 OREL THREE Tz DEFALT
10 ONE 1 . TWO B THREE 3 [DEFALLT <) 10
it 11 TRANSLATE BEGIN DU WORD GERMAR SG-In
12 STEST 0 DO-IBYTECASE O1ll 2ME 0222 TWo 12
1z GILT THREE O % DEFAULT END-Y 3 . 13 - TLDAD ELy @ R IN 2* R ‘ '
14 DECIMAL . 3 14 D IN Y B/ECE o+ 3LK 4 '
iz 15 TRSNSLATE R IM ' R> BLr ! TEIIMAL Sof INTE E™
PRI
11
D) { ZTRINGCATE TDEFINING WORD. (STRING FEYZ HEX
1 ASSEMBLER DEFINITIONMS
I RUN-ITRIMGCALE IF Eid, WOINYX, ¢ ZAVE IF aM 3T
3 W LDRX, A IF MoV, W INx. P = OF
4 EESIM. W LDAX., A INR, A IR 1+ M), W i+ AL, Ir
s AL MOV, WA M3V, O % ADC. A H MW rOBYTE € :
> HOINX, H INX, H FUsH, COSTRCH m NEAT > COME TO FlG CONVENT‘ON
7 DP (RUNTIME HEFE) LHLD. (N = RUN-TIME =EF
E BESIN, W LDAXY, W INX. ™M XRA. H INX, 0= [F. BYTEZ = = NOVEMBER 29
4 1P 1+ DCR, WAF « AT COMPILE TIME) G= EMD. « S3AIMND
1o M FOF. HERE + UMF THEN, s THROW =Wev oDpe
11 W FOP, IF DCR, 0= END, IF FOF. (ELZE 50 NE.OT
i XCHG, M W i+ MOV, M OINY, MW MOV FICKh UF CFA
13 ACHT, NEAT & - JmMF FORTH UEFINITI JIMETOOMESTY
14 DECIMAL --0-

Page 49

FORTH DIMENSIONS II/3

A PROPOSED CASE
STATEMENT FOR FORTH=——=

Karl Bochert/Dave Lion

General Description

The CASE statement suggested here is
done in high level code for the
6800 version of fig-FORTH. It may
have to have some minor changes in
order to conform to the FORTH-79
standard. The names of the words
were chosen for descriptive value.

The word that initiates the set
of cases is:

CASE

Following that are as many sets of:

<forth code> ENDCASE

as needed to represent all the desired
cases which are to be executed. The
first set is for case 0, and each
successive set is for the next higher
case number. After the last set comes
the terminating set:

<forth code> ENDCASES

which indicates the default code to
be executed if the case number is
outside the legal limits. It also
marks the end of all of the cases,
and causes the look-up table to be
compiled. Word (CASE) , which is
the run-time word, is surrounded by
parentheses according to fig-FORTH
convention, indicating that it is
normally never typed in by the user.

At run-time word (CASE) uses one
integer parameter fram the data stack
and leaves none. The given parameter
specifies which one of many cases
will be executed. A single case 1is
defined as a set of FORTH words which
is preceded by the word CASE or END-
CASE, and followed by the word ENDCASE
or ENDCASES. Within a single case, the
usual rules of pairing still apply to
the words: DO, LOOP, IF, ELSE, THEN,
BEGIN, AGAIN, WHILE, REPEAT. That is,
they must be properly matched with each
other.

Case 0 will be executed if the
parameter is 0, case 1 if it is 1,
etc. The parameter will normally be in
the range: 0 thru (# of cases)-l.
Thus, the case function works like the
computed GOTO found in some versions of
BASIC, with the exception that this
code is in-line.

Advantages

CASE is very compactly compiled, so
the number of 16-bit words of overhead
is 2 * (# of cases +1) + 3. This
excludes the code within each of the
cases, but includes the ;S which
follows each case. The following use
of the CASE function, having 3 empty
cases and an empty default case will
oompile as 22 bytes of code:

CASE
ENDCASE
ENDCASE
ENDCASE

ENDCASES

Here, it should be pointed out that
the CASE function is only used within a
definition, and the above sample is
part of a definition.

FORTH DIMENSIONS I1/3

Page 50

More Advantages

CASE statements have little overhead
run-time code. In the FIG model this
version of (CASE) executes 41 FORTH
words, 37 of which are code words.
This may be shortened by leaving out
the two protective features, thus
executing 25 words, 22 of which are
code words. The fastest method takes
about 0.002 seconds to execute.

There 1is practically no limit upon
the number of cases that may be com-
piled. The table of pointers will
contain an address for each case plus
an address for the default case.

Two protective functions in word
(CASE) will handle negative numbers
and numbers that are too high. For
negative numbers, the equivalent
positive case 1is executed. For
numbers too high, a default case is
executed. It should also be noted
that any intermediate case that will
never be executed still needs an
ENDCASE, but the compiled code will
contain only a ;S . The default
case may be left out, and will then
compile like an empty case.

One additional feature to point
out 1is that CASE statements may be
nested much the same way as 'DO' loops
can.

Disadvantages

There is one machine dependent
factor that must be considered before
installing these words. Since we fool
around with return addresses in the
return stack, we must know whether the
return stack of the machine stacks
'return to' addresses or 'came from'
addresses. The former is the situation
where the address is not incremented
before doing the first fetch after a
:S . The latter type of machine (my
6800 version) does do a pre~increment

after a ;S . Appropriate camments for
patching are included in the definition
of (CASE) .

The way to find out which type of
FORTH machine you are using is:

: Pl R ;

: P2 Pl ;
P2 P2 - .
FORGET P1

The printout will be 0 for the 'came
from' type of FORTH machine, and 2 for
the 'return to' type.

Another thing to watch out for is
that while inside a CASE statement you
no longer have access to any loop
conter (I) which was created outside
the CASE statement. During execution
of the chosen case there is one extra
address on the return stack, covering
up what was there.

Compiled Structure

Note: Each line shows the contents of
one lé6-bit word of memory except
for the 1lines within braces:
, which signify any amount of
memory, including none, which may
contain FORTH instructions,

-] |

(CASE) (the pointer to code fleld cddress of (CASE)
pointer to end P ittt bt P
{ case ¢ 0 } [' 1
{ . } | |
:S ['
{ case ¢ 1} (mmmemcmecnanne .o
{ d } i |
43 § B Thl: part
........... | <ontains
: cas: 2 ; << ; ! | the code
;S i 1 for the
L s etc. : ¢ | | Cases
{ case ¢+ n } (lommmmmm | |
{ o i ! !
H
[
i

{default code} {Cmmnem, 1
{ .]

i
18 [
pointer to defaulr <<-, >~ |
pointer to case n !
: f 1 ete. T o3 b o 1
pointer to case 2 : Sromm——a
|
'

and does not

i . contain any
pointer to case 1 R e 1
pointer to case 0 Yracasscemme=at | FORTH words
ptr to default prr d>-=' ((~emwer-cscccacccans g

* Any case code may be left out. The
resultant case segment will have
only a ;S in it.

Page 51

FORTH DIMENSIONS I1/3

| This part is the
{ ~look up table,

tae

Definitions for 6800 Fig-FORTH

)
)

)
)
)
}
)
)
)

1CASE) { the run-time function
ABS { 9 make sure parameter 18 +
R> ¢ 9et address of pointer to tadle
2+ (delete this line for 'return to' machines (=smwas)
3 oup { get pointer to table
2+ add this line for 'return to' sachines (seswsssses)
>R { save final recturn address
SWAP 1+ DUP o { find addresses i1nto table of the
OVECR 5Swap [highest legal case,
- { and the desired case
SWAP @ (@ then choose the .
MAX (O] best one
e { read table entry for chosen case
2 - (delete this line for 'return ta' maciines <=ssame
>R ; (Stack it & 'return’ to 1t

NOTE: the lines marked ')' may be deleted to speed up executlion
while sacraificing protection.

IASE
COMPILE (CTASE} { compile the run-time executor
HERE 0 , { init table pointer & get its addr
¢ t stack & marker on data stack
INMEDIATE
LADCASE
CONMPILE ;5 { end of a case
SRRE { stack a ptr. to next case
} IMKEDIATE
ENDCASES (this word writes the look-up table
CONPILE ;S (end of default case
, { put pointer for default case into tadle
BERE R (tesporarily save addr of pntr to case(n]
oue { look for casef0]
19 4 (didn’'t find marker, so:
3EGIN
, DUP Qe (store pners to case(n]! thru case(l]
END { until reaching the marker
TRAEN
OROP (drop the macker
oup { dup the pfa
2, (store pntr to case(0)
(data stack is down to i item: the pfa
HERE SWAP | (store this addr into pfa
§> (fetch 8ddc of ptr to highest normal case
IMMEDIATE

A Test of the 'CASE' Function:

3 -4 { tey & range of parasmeters, some of which are fllegal)

élsgul . (preceed each line with the case ¢ being tried)
.* This is the case } 0 code” ENDCASE
{ ==-~case ¢l does nothing---) ENDCASE
.* This is the case ¥ 2 code® ENDCASE
.* default case*
S

[«) { do the next case on a new line)
LDOP

The Result is:

TEST-WORD { typed by human)
-4 default case

-3 default case

-2 This is the case § 2 code
-1

0 This is the case # 0 code
1

2 This is the case # 2 code
3 default case

4 default case

OK

Time Trials:

Here we find out how long it takes
to get to the proper case. The CPU
clock is set at 1.000 MHz. The word
(CASE) was defined leaving out the
protection features. Then the follow-
ing definitions for timing loops are
tried, executing null cases which do
nothing. 100,000 loops are timed:

OEC IMAL

s INNER 1000 0 DO] CASE ENDCASE ENDCASE ENDCASE ENDCASES LOOP ;

: SPEED .* X" 100 0 DO INNER LOCP .* X* ;
SPEED XX OK { this vas 210 seconds on the 6800 FORTH)

1000,000 loops are timed, leaving out
the CASE portion:

: INNER2 1000 0 DO Looe :
: SPEED 2 .® X* 130 0 00 DIMMER2 LOOP ." X" ;
SPEED2 XX OX { this was 13 seconds on the 6800 FORTH !

Thus, it can be seen that it takes
about 2 milliseconds to vector to
the desired case if the two protection
features are left out. Putting in the
protection would increase the time to
about 3.5 mSec.

Karl Bochert
Dave Lion
Los Altos, CA 94022

Judges' Comments -

Karl and Dave were the only entry
to make provision for pre-incrementing
and post-incrementing versions of
NEXT. This refers to when the inter-
pretive pointer IP is advanced within
NEXT. They give a test to check your
system. This version uses a campiled
table of indexes to give minimum
execution time. The style and docu-
mentation is to be complimented.

FORTH DIMENSIONS I1/3

Page 52

CASE AND PROD
CONSTRUCTS

Steve Brecher

{ syntax: www CASEOF

www CASE www ESAC
- { O or more CASE/ESAC pa:irs
allowed, at least 2 patrs
. for semantic sense.]
www CASE www ESAC
OTRERWISE www
ENDCASEOF

[OTHERWISE optionall

www stands for O+ Forth words,
possibly including complete case
expression(s], these possibly still
further nested. But code represented
by www can make no net change to the
return stack, as the case selector
value is stored there. Runtime:
CASEOF pops, saves top of compute stack
as selector. CASE pops, tests top of
stack vs. selector; if =, executes
words up to next ESAC followed by words
after ENDCASEOF. If <>, executes words
after next ESAC. OTHERWISE is optional
for readability. SELECTOR used any-
where between CASEOF and ENDCASEOF
leaves the selector value, provided no
net change has been made to the return
stack since CASEOF; SELECTOR is an
alias for 'R'.)
31 CONSTANT CASSYNTX (Error
number, case construct

syntax)
: CASEQOF
(=> 04 . Proncunced “case of", after Pasxc:zl.)
COMPILE >R { to save selector for testing by CASEs)
[+] { end-of-data sigral to ENCCASEOF)
4 (Por CASE syntax check) ;
IMMEDIATE

CODE CASEBRANCH (n -> . Forth branch
to the offset
following inline if
n <> @RP, else bump
IP over offset.
Compiled by CASE.)

S)+ RP () CMP,

nL 17, { If n < 4RP,)

r (3 I[P ADD, (add inline offset to [P}

MEXT, ENDIF, { and "branch®)
1P)+ TST, (else buap IP over inline offset)
KEXT, C: (and continue there.}

: ?CASE { nl n2 -> . Compile-
time check for
nl=n2. If fail

issue syntax error)
<> IF CASSYNTX ERROR
ENDIF ; :

CASE ({ 4 -> addr 5 .
Executes ?CASE
syntax check;
campiles CASEBRANCH
with a zero offset;
pushes address of
of fset so ESAC can
fix it later; pushes
5 syntax check
signal.)

4 ?CA3E { Syntzx check}

COMPILE CASEBRANCH

ASRE (Push add:-ess of offset so ESAC can parch 1%
9, (ESAC will crarge the 0O to +offset for CJASEBRANIH)
1 { For ESAC syntax check) ;

IMMEDIATE
: ESAC (addrl 5 -> addr2
4 . Pronounced
"eesack"; "“case"
spelled backward.
Executes 7?CASE
syntax check; fixes
the offset at addrl
so the CASEBRANCH
there will branch to
the code after ESAC;
compiles BRANCH with
a O offset, pushes
the address of the O
offset so ENDCASEOF
can fix it later;
leaves 4 for syntax
check by later
word.)

S CASE { Syntax check)

° { ELSE will be checking for this)

{COMPILE] ELSE (ELSE fixes CASE offse:, pushes addr
of O offget 1t compiles with BRANCH)

2e (EL3E leaves 2, CASL/OTHERWISE/ENCCASZOF want 4)

IMMEDIATE

Page 53

FORTH DIMENSIONS II/3

: OTHERWISE (4->4. For
readability,
optionally written
after last ESAC to
identify code which
is executed if no
cases match.
Performs compile-
time checks.)

2COMP

4 2CASE

4 ;

IMMEDIATE

: ENDCASEOF (O addrl addr2 ...
addrn 4 -> .
addrx is the addr of
an inline offset
following a BRANCH
campiled by an ESAC.
Executes ?2CASE
syntax check; O on
the stack is an
end-of-data signal
which was pushed by
CASEOF; For each
CASE...ESAC, patches
the offset at addrx
so that the BRANCH
compiled by ESAC
will branch to the
R>DROP which END-

CASEOF compiles.)
4 ?CASE (Syntax check)

(thetre's a noniero offset on stack)
{ ENDIF will be checking for this)
(ENDIP will compute, emplace offset)

BEGIN -DUP WHILE
2
(COMPILE| ENDIP

REPEAT

COMPILE R>DROP ; { code drops case value from R stack)

IMMEDIATE

ALIAS SELECTOR R

{ PROOS/PROD/DCRP/CATCHAL/ENDPRODS ate aralogous to
CASEOP /CASE/ESAC/OTHCRWISE/ENDCASEOF except there
i{s no selector value: dach PROD tests for tf on stack.)

Steve Brecher
Software Supply
Long Beach, CA

Judges' Camments -

This entry supports essentially the
same syntax and semantics as the
FORTH-85 CASE statement (see FD 1/5),
but offers the following advantages:

1. Compile-time syntax checking.

2. Explicit OTHERWISE clause.

3. Case selector 1is kept on return
stack instead of in a special
variable. This allows nesting of
CASE constructs.

4. l6-bit branch offsets are used,
rather than a mixture of 16-bit
addresses and 8-bit offsets.
This eliminates the need for a
special run-time END-CASE word and
simplifies campilation.

NEW PRODUCT

Z-80

We have a 2-80 implementation of
FIG-FORTH that was derived directly from
8080 FIG-FORTH 1.1 and will run under
either CP/M or Cromemco CDOS. The code
is optomized to exploit the additional
Z-80 registers and instructions.

Although this was developed for our own
internal use we are willing to make it
available at cost to interested FIG
members. For $25.00 to cover media,
copying, and shipping, we will send two
soft- sectored single density eight inch
diskettes containing executable Z-80
FORTH interpreter, all source files, and
sample FORTH programs. Payment may be
sent by check or money order to the
address below. Please allow us 30 days
for shipment. LABORATORY MICROSYSTEMS,
4147 Beethoven Street, Los Angeles, CA

90066, (213) 390-9292.

33 CONSTANT PROSYNTX (Ertor number, production set syntax)
1 PRODS {=>06 . Compile-time setup for PROD set.)
] { end-of~-data signal to ENDPRODS)
6 { for PROD syntax check)}
IRMEDIATE
Tt 2PROD {al n2 =>.)
<> IP PROSYNTX ERROR ENDIF ;
1 PROD { 6§ ~> addr 7 }
6§ ?2PROD
6
IMMEDIATE
+ BNDPRODS (O addrl 4ddr2 ... addrn 6 ->)
6 ?PROD (Syntax check.)
BEGIN -DUP WEILE { there's a nonzero offset of stack)
2 (EMDIP will be checking focr this)
[ComPILE] ENDIP (ENDIF will compute, emplace offset)
REPEAT ;
INREDIATE

FORTH DIMENSIONS II/3

Page 54

———A CASE STATEMENT ——

Mike Brothers

Approximately a year ago I was
writing a program and needed a more
powerful branching construction than
the standard IF..ELSE..ENDIF con-
struction. Somehow I decided on
implementing Pascal's CASE statement in

FORTH, and this is the one which is
described here. This CASE statement is
also included in the standard SL5S

package, available from the Stackworks.

Some of the advantages of SL5's
CASE statement are:

1) Infinite nesting is possible.
2) The QODE is machine independent.

3) Programs are easier to read
because of its simplicity.

CASE statement definitions

: SCASE R> DUP 2 o SWAP @ 5% OR
: §e: OVER = IF

oROP B> 2 ° >R

nst > d

1w

™D H
: $;; B> DROP ;
: CASE \ $Cast
: e\ §«: RERE
s\ 855
: CASEND \ B>

Compilation

During compilation, "CASE" compiles
the address of "SCASE" and a 0 for the
address field. Every subsequent "=:"
causes "$=:" to be compiled along with
a dummy address field (to be set by
the next ";;"). The word ";;" then
campiles "$;;" and replaces the address
field of the previous "=:" with addrx.
When "CASEND" is finally processed, the
samething resembling figure 2 should be
oresent.

: NOCASE DU?
HERE 0 , ; IMMEDIATE
[/} . IMEDIATE
DMEDIATE

IOEDIATE

HERE SUAP ! |
\ 0mOP WUERE SVAP ! ;

| %casg | 1 appml |

addrA: ExpressionAl | $=: | | sddeB | exprassionA?

sddy3: ExpressicaB] | 8=: | | addreC | expressiond?

)
i

addrY: Expression?l 1 eXpreseionY2 181
efdsz: | B> | | 0ROP
addzl:

Execution

Upon entry, a number corresponding
to the case is assumed to be on the
stack. "SCASE" then places ADDR]1 on
the return stack. ExpressionAl is then
executed, and "$=:" campares the value
on the tos (top of stack) with the nos
{next on stack), which should be the
entry value. If these are equal, the
entry value 1s dropped and ExpressionA2
is executed before "$;;" sets the
interpreter pointer to ADDR1 (which is
on the return stack). If the two
values are not equal, "§$=:" sets
the IP to addrB and execution continues
until a valid case is found or the
cases are exhausted, which causes ADDRI
to be removed from the return stack and
the entry value dropped.

The word "NOCASE" always causes
the $=: to execute the following
expression, simply by setting the tos
equal to the entry value.

Examples of CASE statement usage

: EXAMPLELl BEGIN

GCH CASE
APPLE °
BLUEBERRY "

." CHBOICE? *
4] =:
42 = .

. A i3 for APPLE)

M 3 1s for BLUEBESRRY)
4) =: ,® CHERRY * C 1s for CHERRY)
46 w: " DATE * 1]
45 e: .* ELDERBERRY * £
NOCASE =: .° WRONG ° r

CASEND

ENOD

is for DATE !
is for ELDERSERPY
epeat tili valid)

O e e s

Figure 3. Exampie of CASE statement uszge

CASE statement example

The example shown above illustrates
the CASE statement's simplicity and
power. When EXAMPLEl is executed, a
character is read from the keyboard.
If the character is an "A", the string
"APPLE" is displayed. If the character

is a "B", the string "BLUEBERRY"
is shown. If none of the five are
selected, the string "WRONG" is

Page 55

FORTH DIMENSIONS 11/3

displayed and the loop is executed
again until a valid (A-E) choice is
entered.

The COND Statement

One particular advantage of the
case statement is that an additional
branching structure which executed
an expression based on a boolean
expression can be defined with a few
more words. I call this structure the
COND statement, and the extra words
needed are shown in figure 3. The
structure is much like that of the CASE
statement, as shown in the example in
figure 4.

: COND COMPLILE CASE IMMEDIATE

: CONDEND \ R> \ JDROP HERS SWA? : ; IMMEDIATE
: $:: IF
R> 2 & >R
ELSE R> @ >R
ENDIF ;
tor \ S HERE 0 , IMMEDIATE
Figure 4. COND statement definitions
: EXAMPLE] COND
DUP 0> :: T" POSITIVE" ;
ouUP 0= :1 T° ZERO" ;:
1 T* NEGATIVE®
CONDEND :

Pigure $. Examples of COND statement usage

The COND Example

The Example shown above illustrates
the similarity between the COND con—
struction and the CASE statement. Upon
entry to EXAMPLE2, an integer is
assumed to be on the stack. One of
the strings "POSITIVE", "“ZERO", or
"NEGATIVE" is displayed depending on
the integer.

Mike Brothers
The Stackworks
Bloomington, IN 47401

Judges' Comments - This is a practi-
cal method but not as portable as it
might appear. The 2+ in S$CASE and $=:
will have to be relocated for preincre-
menting 6800 systems. The COND state-
ment is a nice variation on CASE.

NEW PRODUCT

FORTH FOR CP/M

Mitchell E. Timin Engineering Co.
has an enhanced version of FIG FORTH
ready for immediate delivery. It is
supplied on an 8 in. single density
diskette, ready to run on any system
with CP/M and at least 24K of memory. A
FORTH style editor with 20 commands is
included, as well as a virtual memory
sub-system for software which is
permanently stored on diskettes, then
loaded when needed. The user may also
make permanent additions to the resident
FORTH vocabulary. A Z-80/8080 assembler
is also included, allowing the user to
create new FORTH definitions which
compile directly into machine code. All
Z-80 or 8080 instructions may be used.

The IF...ELSE..., BEGIN...UNTILL, and
BEGIN...WHILE...control structures may
be included in assembler definitions;
these will automatically compile into
appropriate machine code.

Other enhancements include an
interleaved disk format that minimizes
the time required for disk access. A
1024 byte disk block may be read or
written in as little as 1/6 second.

Eight of these blocks are maintained in
RAM for immediate access and
automatically swapped with others on the
disk as they are needed.

The price is $75 for the 8 in.
single density version, $90 for other
diskette formats. Adequate
documentation is included, suitable for
the beginner as well as the experienced
computer user.

FIG FORTH was originally defined by
the FORTH INTEREST GROUP and is very
close to the FORTH-79 international
standard.

Mitchel E. Timin Engineering Co.,
9575 Genesse Avenue, Suite E-2, San
Diego, CA 92121,

FORTH DIMENSIONS II/3

Page 56

=—=DO-CASE STATEMENT—

n
2]
=

——
OV IR NLWNTO

e g
v wn

sCR

Dwight K. Elvey

OVERVIEW OF STATEMENT:

This is a DO-CASE written in FIG
FORTH. It allows the operations of
statements on the condition of a match
of a case value and a case key. This
DO-CASE also has a range case that
allows the use of the condition to be
done on a range of case key values.
The NOT CASE and the NULL CASE concept
are also allowed in this DO-CASE.

)19

(DO-CASE ALSO COMPILE { +++J LIKE COMPILE)
L]]

1 comprLe{ ?COMP BZGIN R> DUP 2+ >R @ DUP ' J CFA = 1P DROP
1 BLSE , O ENDIF UNTIL

: DO-CASE COMPILE >R O S ; IMMEDIATE
s CASE 5 ?PAIRS COMPILE(P e OBRANCE} HERE O , 7 ; IMMEDIATE

t RANGE-CASE 5 ?PAIRS COMPILE { R SWAP - O< O= OBRANCH} HERE O ,
HERE COMPILE BRANCH HERE O ,

COMPILE CR - O< OBRANCE) HERE O ,
HERE SWAP >R ROT >R R - R> | OVER - SWAP | R> 7 ; IMMEDIATE
: END-CASE 7 ?PAIRS COMPILE B8RANCH HERE O , SWA2 HERE OVER -
SWAP | SWAP i+ S ; IMMEDIATE

1 END-DO-CASE 3 ?PAIRS -CUP IF O DO HERE OVER - SWAP | LOOP
enptr ComPILEC R> DROP Y ; IMMEDIATE ;$

29
(EXAMPLE OF DO CASE)
s EXAMPLE DO-CASE
4 CASE ." THE NUMBER WAS 4 ® CR END-CASE
S 3 RANGE-CASE .* THE NUMBER IS J OR 5 " CR END-CASE
6 CASE .® THE NUMBER 1S 6 “ CR END-CASE
{ NOLL OR NOT CASE)} ." THE NUMBER ISN'T 3,4,5OR 6 " CR
END~CASES ; ;S

COME TO FIG CONVENTION
NOVEMBER 29

WHAT EACH DEFINITION FOR DO-CASE
DOES;

DO-CASE consumes the case key value to
be used later by the individual
cases. This i1s the initialization
statement for a DO-CASE field.

CASE does a comparison of the case key
value and a case value. If a
match is found the statements
between CASE and the next END-CASE
are done, then operation is picked
up after the END-DO-CASE statement;
else operation continues after
the END-CASE statement and continues
until END-DO~CASE or the next
successful case.

RANGE-CASE does a comparison of the
case key value and an inclusive
range of values set by the two case
values. The first case value on the
stack must be greater in value then
the next case value on the stack.
The operation of RANGE-CASE is
otherwise the same as CASE.

END-CASE indicates that the conditional
CASE or RANGE-CASE is ended. It
must be paired with any use of CASE
or RANGE-CASE.

END-DO-CASE is used to close a DO-CASE
®field. 1Its main purpose is to do
the cleaning of the stack and
provide an exit point for the CASE
statements. DO-CASE must be paired
with a closing END-DO-CASE.

GLOSSARY ENTRIES

CASE
n —- (run-time)
n —~- addr n (compile)
Used in a colon-definition in the
form:

n(l) DO-CASE ... n(2) CASE (tp) ... END-CASE

(fp) ... END-DO-CASE

Page 57

FORTH DIMENSIONS II/3

At run-time a comparison of n(l) and
n(2) is done. If there is a match
the true part is executed, then
execution resumes after END-DO-
CASE, If there is no match execu-
tion continues at the false part
(fp). It must be followed by an
END-CASE and an END-DO-CASE. It
must be preceded by a DO-CASE.

At compile-time CASE compiles a
branch and reserves space for an
offset at addr. addr and n are used
by END-CASE to resolve the offset
and for error testing.

DO-CASE

n — (run—-time)
-—- nl n2 (compile)

Used in a colon-definition in the
form:

n(l) DO-CASE ... n(2) CASE (tp] ... END-CASE

(fp) ... END-DO-CASE

At run-time it consumes the value on
the stack to be used later by case
statements. This is used to ini-
tialize a do case field. See CASE
for its use.

At compile-time DO-CASE leaves a
case count (nl) and a value for
error testing (n2).

END—-CASE

_— {run—-time)
nl addrl n2 --- addr? nl n4 (coapile}

At run-time it is used to terminate
a CASE or RANGE-CASE statement. See
CASE or RANGE-CASE for its use.

At compile~time it takes a value for
an error check (nl), an address
{(addrl) to resolve an offset and a
value that is the number of cases.
It leaves a value for error checking
(nd) , a value with a new case count

(n3 = nl + 1) and an offset at
address (addr2) to be used later.

END-DO-CASE

—_— (run-time)
addr(}) addr(2) ... addr(al} nl n2
--- {compille)

At run-time this terminates a
DO-CASE field. See DO-CASE or CASE
for its use.

At compile time it takes a case
count (nl) and the count number of
addresses to be used to resolve
offsets and a value to use for error
checking (n2).

RANGE-CASE
nl n2 --- (run-time)
n--—- addr n (campile)

Used in a colon-definition in the
form:

ni{l) DO~CASE ... n{2} a{)) RANGE-CASZ (tp)
. END-CASE (fp) ... END-DO-CASE

At run-time a camparison of n(l) and
the inclusive range of n(2) and n(3)
is done. If there is a match the
true part (tp) is executed, then
execution resumes after END-DO-CASE.
It must be preceded by a DO-CASE.
n(2) must be greater than or equal
to n{3) to do a successful case.

At compile-time RANGE-CASE campiles
a branch and reserves space for an
offset at addr. addr and n are used
by END-CASE to resolve the offset
and for error testing.

EXAMPLE OF (SE:

SCR # 29 is an example of the use of
DO-CASE. It shows the use of CASE,
RANGE-CASE and null or not-case. In
order to use it type in SCR # 19
first then SCR # 29. It is used by

FORTH DIMENSIONS II/3

Page 58

typing a number, then EXAMPLE. The
result will be a comparison of the
number you typed and the comparisons
done in the DO-CASE.

ADVANTAGES AND DISADVANTAGES:

The main disadvantage 1s that
DO—-CASE uses the return stack like
DO ... LOOP does. This means that a
value can not be passed on the
R-stack from the outside of the
DO-CASE field to the inside or
vice-versa. Also this means that if
the loop value I is to be used it
must be on the operation stack
before entering the DO-CASE.

The advantages of this DO-CASE are
that it has a RANGE-CASE and the
ability to allow the concept of not
or null-case. This allows it to be
used for something like an input
entering routine for something like
an editor. The CASEs can be used
to prescan for special keys, the
RANGE-CASEs can be used as a capi-
tals only routine and the null-case
used to do the normal entry.

Dwight K. Elvey
Santa Cruz, CA 94065

Judge's Comments -

This entry performs the functions
of the FORTH-85 CASE statement. It
also provides compile-~time syntax
checking, allows a range of indices to
be treated as a single case, and offers
a "none-of-the-above" case.

Compiling the same list of run-
time words for each case results in
excessive space overhead (about 28
bytes for each RANGE-CASE). Defining
some new run—-time words would save
space without adding much execution
time.

Also, using " - 0<" to check the
index against a range gives the wrong
result if the subtraction overflows.

FIG NORTHERN CALIFORNIA
MONTHLY MEETING REPORT

28 June 80
FORML Session -

Tom Zimmer described the product of
his last two weeks effort - tinyPASCAL
(written in FORTH, of course). Two of
his remarkable routines include the use
of Ragsdale's table structure (C.F.,
Morse code tutorial, 24 May 80 FIG Meet-
ing) in a Tokenizer and his technique
of recursion uning dummy pointer-vari-
ables. The PASCAL design came from a
"Byte" (Sep-Nov 78) series of articles
which instructed the reader to do it in
BASIC. Tom's first version of PASCAL-
under-FORTH occupies some forty blocks.

F1IG Meeting -

Three technical talks were deliv-
ered. Michael Perry described a CP/M
File System written in FORTH which gives
a 8080/Z80 version of FORTH compatibil~-
ity with and use of extant CP/M data
files.

Kim Harris spoke about arrays, i.e.
how tables are created by alloting space
to named variables and accessing array
components by manipulating an index.

Bill Ragsdale discussed database
concepts after FORTH, Inc.'s poly-
FORTH and the organization of fields
within files. Their FORTH definitions
and demonstrations of file manipulation
"How to talk to mass storage'.

Announced was the availability of
source code for FORTH on the 6809 run-
ning under SWTPC's FLEX 1.9. This is
copyrighted by Talbot and is available
from FIG for $10. See order blank.

Regarding FIG organizational busi-
ness, two volunteers were asked to step
forward - cne to organize meetings,
sequence schedules and distribute tasks
(Ragsdale estimates 3 hrs/mo effort
needed) and the other to take up the
meeting announcement effort.

;s Jay Melvin

Page 59

FORTH DIMENSIONS II/3

=A CASE IMPLEMENTATION=

william S. Emery

Yet another CASE implementation,
this for either the TI990 or the
Motorola 6800.

The objectives of this implementa-
tion were:

l. To provide a clear source
program structure when using
CASE, i.e. no compiler direc-
tives.

2. To provide a direct exit from
any executed CASE to the next
program statement.

3. To provide an ELSE (or Trap)
statement within the CASE
structure.

Please note: in both my 990 and 6800
implementations of FORTH
all compiled addresses
are 16 bits. No relative
addressing is used.

The compiling word 'CASE creates a
dictionary entry as follows:

1. The code address of (CASE).

2. The source argument to be
compared. This eliminates the
compilation of LITERAL and the
necessity of moving the argument
to the stack.

3. The branch address for I when
not true. This is the address
of the next CASE statement in
the list.

A camplete CASE statement requires
three unique words:

<CASE , pronounced "open case,"
CASE , pronounced "case," and
CASE> , pronounced "case closed.”

A sample of use is:

: TEST
<CASE 1 ." FIRST"
CASE 5 ." FIFTH"
CASE 7 ."™ SEVENTH"
ELSE . ." NOT VALID"
CASE> ;

At compile time <CASE places a
zero delimeter on the stack, campiles
to the dictionary (CASE), the source
argument, and a nul, which will become
the not true branch address. CASE
then compiles a standard ELSE, which
resolves the preceding not true, and
deposits a nul address, to be resolved
by CASE>. The address of this nul cell
is left on the stack. Finally, CASE>
resolves all addresses on the stack to
itself until the opening nul is encoun-
tered.

{ TI990 ASSEMBLER)

) € (COMPARE ARGUMENT TO STACK)

Q= 1P $ INCT I INCT (POP STACK ENTER PRCC)
ELSE 1) I Mov { SET UP BRANCH ADDR)
THEN NEXT

CODE (CASE)
I)+ s

: "ELSB \ (gL8E) 8ERE O ,
1 0, 32 WNORD MNUMBER , :

AERE ROT |

1 'CASE \ (CAse) 4, HERE O ,

t <CASE 0 'CASE INMEDIATE
1 CASE ‘ELSE 'CASE : IMMEDIATE
1 CASE> BEGIN HERE SWAP ! 70UP O= END ; IMMEDIATE

A dictionary map of the compiled
source would be as follows:

{headers omitted - addresses in hex)

1X00 (case) 0001 XX12 (.") SF IR ST (else) XX4i4
XX12 (case) 0003 XX24 (.®) SF IF TH (else) XX44
Xx2¢ (case) 0007 XX34 (.") 7S EV EN TR

X34 (else) XX44 (.") 9N OT bV AL ID

X 44 (:)

FORTH DIMENSIONS II/3

Page 60

While using byte offset addressing
for the branches would have saved one
or two bytes per CASE statement, to do
so would violate the definition of word
aligned dictionary established at the
recent Standards Team meeting.

The word incorporating the CASE
paragraph is entered with any 16 bit
value on the stack. Any CASE statement
finding the stack equal to 1its argument
pulls the entry from the stack. If no
CASE statement matches the stack
parameter the value remains for the
ELSE statement, if used, or beyond the
"case closed" point.

This procedure executes (and com—
piles) nicely on the byte oriented
Motorola 6800 by using the following
definition for (CASE).

CODE (CASE) (M6800 ASSEMBLER)
I LDX 0) LDX N STX + SAVE ARGUMENT)
TSX 0) LDX N CPX . ZCMPAPE TO STACK
Q= IF A PUL B PUL « POP STAIK
I LDX INX INX INX INX { ENTEK PROC !
ELSE I LDX 2) LDX 1 STX ¢ SET BRANCH)
THEN NEXT

Thank you for the opportunity to
submit this. I think the contest idea
is a great one. How about some future
contests on +LOOP, the Bartholdi "TO"
concept and/or Data Structures. If
publication space permits I'd also be
interested in a competition on SORT
and/or an approach to precompiled,
relocatable FORTH for virtual memory
processing.

William S. Emery
Costa Mesa, CA 92626

Judges' Comments - This entry
achieves its objectives with only 7
short and well-factored new word
definitions. The CODE word could have
been written in high-ievel. While
having to specify the case keys as
numbers at compile time is a restric-
tion, it is adequate for many applica-
tions. And it does simplify the source
code.

FIG NORTHERN CALIFORNIA
MONTHLY MEETING REPORT

26 July 80
FORML Session -

Henry Laxon presented his string
package which has been his first FORTH
programming effort. He pointed out that
this package was designed for a comput-
erized type-setting task and not text
editing. The word "string" takes a
length parameter and name and is mani-
pulated so to find, concatenate, parse,
move and so forth.

John Cassady then outlined his
string package which he fashioned after
Northstar's BASIC. He pointed out it's
file handling utility and a discussion
arose regarding screen windows, input
windows and video segmentation. Amaz-
ing how FORTH gets strung along.

FIGC Meeting -

Announcements included the report
of over 25 attendees at Kim Harris' Hum-
bolt State FORTH class.

Allyn Saroyan described the prob-
lems he's had trying to convert code
from other machines and asserted that
we ought to submit code along with
its algorithm and perhaps even assemb-
ler particulars.

Don Colburn, from Creative Solu-
tions, mentioned a FORTHcoming tutor-
ial under CP/M with stackgraphics.

Bob Smith reviewed progress and
problems of the floating point stand-
ards team effort.

John James described Cap'n Soft-
ware's Apple editor.

Bill Ragsdale spoke briefly about
the Installation Manual version editor
and code was shown on how to extend
FORTH, Inc.'s editor.

A preview copy of the August 1980
Byte magazine was passed around. See
the order form to get your copy.

;8 Jay Melvin

Page 61

FORTH DIMENSIONS 11/3

————APPLE - 4th CASE——

V.w, Fittery

Here 13 a select case for Apple-4th.
The Apple works so-far and allows any
level of nesting of any of the allow-
able structures plus more BEGIN-CASES,
END-CASES., You will get a lot of
failures 1t vou do not balance your
(BEGIN-UASES==END-CASES | and your
(CASE==END—CASE). Alsc be aware the
the tor of stack 1§ still available if
none of the case statements are exe—
cuted. Otnerwise the top of stack is
eaten up by the case statement. When
BEGIN-CASES 15 encountered 0 1s placed
on the stack for END-CASES. When
CASE 1is ercountered at compile time
OVER = JERC-BRANCH O , DROP is compiled
inline. when END-CASE is encountered
the ZERO-BRANCH for the matching case
is patched to the proper jump point.
When END-CASE is found all forward
jumps set-up by END-CASE are resolved.
This 1s done with a BEGIN END looking
for the € put on the compile time stack
by BEGIN-CASES. Good luck.

Note: The general approach of the CASE
statement 1s:

:TEST 5 OVER = IF DROP ." FIVE " ELSE
6 OVER = IF DROP ." SIX " ELSE
7 OVER = IF DROP ." SEVEN" ELSE

DROP ." BAD INPUT"
THEN THEN THEN ;

Generates the same code as:

: TEST
BEGIN~CASES
34 CASE 34 . END-CASE
35 CASE 35 . END-CASE
36 CASE 36 . END-CASE
DROP ." BAD INPUT"
END-CASES ;

Note: You must use up so if no case is
executed as if is left on the
stack.

Case Documentation

The CASE statement format 1is
as follows:

The result of trne BEGIN-CASES,
END-CASES i5:

1 0 ix a CASE ortion 1s executed
1 1 1f no CASE opticn is executed

Tf no CASE opticn 1s executed the
flow of execution starts after the last
END-CASE. Because of this and the fact
that the top of stack passed to the
BEGIN-CASE is still on top of the stack
you may drop the parameter or you may
use it to do a calculation which is
done only when none of the case options
are selected:

Note: Though the code executes exactly
the same code the format 1n
Figure 1 1s much easler to
understand than that in Figure
2. It is alsc much preferable.

Case Statement

Figure 1[.

ESC-ESC ." ESC-ESC" ;
NEC ." ESC-CTL-N"
LEC ." ESC-CTL-L"
SEC ." ESC-CTL-S"

as ¥e ee ws e
s we we

ESC KEY

BEGIN—-CASES
27 CASE ESC-ESC END—CASE
14 CASE NEC END-CASE
12 CASE LEC END~CASE
19 CASE SEC END-CASE

END-CASES ;

: ourpur
BEGIN-CASES
27 CASE ESC END-CASE

14 CASE 91 DOT END-CASE
12 CASE 92 DOT END-CASE
19 CASE 95 DOT END-CASE
poT

END-CASES ;

FORTH DIMENSIONS II/3

Page 62

: MONITER BEGIN KEY DUP OUTPUT
32 = END ;
:S

Figure 2.

: ESC-ESC ."™ ESC-ESC" ;
: SIC ." ESC-CTL-S" ;
: LEC ." ESC-CTL-L" ;
: NEC ." ESC-CTL-N" ;

: OUTPUT
BEGIN-CASES
27 CASE KEY

BEGIN-CASES
27 CASE ESC-ESC END-CASE
14 CASE NEC END-CASE
12 CASE LEC END~CASE
19 CASE SEC END~CASE

END-CASES

END-CASE

14 CASE 91 DOT END-CASE
12 CASE 92 DOT END-CASE
19 CASE 95 DOT END-CASE
poT
END-CASES ;

¢+ MONITER BEGIN KEY DUP OUTPUT

32 = END ;
;S

Support Words

;

BACKSLASH .PFETCH 2 -, ;
BRANCH R> 2 + @ >R ;
ZERO-BRANCH 0= IF R> 2 + @ >R

ELSE R> 2 + >R THEN ;
BEGIN-CASES 0 ; IMMEDIATE

OVER= OVER = ;

CASE BACKSLASH OVER=

BACKSLASH ZERO-BRANCH HERE O ,
BACKSLASH DROP ; IMMEDIATE

END-CASE BACKSLASH BRANCH HERE 0 ,
SWAP HERE 2 - SWAP ! ; IMMEDIATE
END-CASES BEGIN -DUP IF HERE 2 - SWAP
! 0 ELSE 1 THEN END ; IMMEDIATE

PRINT-OFF
85 85 PLIST

(
(
{

4

GENERAL 8-BIT SELECT CASE COBE)
NEEDS BACKSLASH (\)} TO WORK)
FOR 16 BIT VERSION SEE ¢ S 1,2,3)
XXX IF ELSE THEN ;

XXX DUP @ SWAP 2 + @

(#1: 2 BECOMES 1 IN THE ABOVE .LINE)

o~ e

FORGET XXX

CONSTANT BRANCH

CONSTANT ZERO-BRANCH

BEGIN-CASES 0 ; IMMEDIATE

OVER= OVER = ;

CASE BACKSLASH OVER=

ZERO-BRANCH , HERE 0 ,

BACKSLASH DROP ; IMMEDIATE

END-CASE BRANCH , HERE O ,

SWAP HERE 2 - SWAP ! ; IMMEDIATE

$2: 2 BECOMES 1 IN THE ABOVE LINE)
END-CASES BEGIN -DUP IF HERE 2 - SWAP
$3: 2 BECOMES 1 IN THE ABOVE LINE)
! 0 ELSE 1 THEN END ; IMMEDIATE

E. W. Fittery
International Computers
Mount Arlington, NJ 07856

Judges' Comments - Interesting but
rather limited.

COME TO FIG CONVENTION
NOVEMBER 29

Page 63

FORTH DIMENSIONS 11/3

(B

=——DO-CASE EXTENSIONS—

Bob Giles

Upon using the DO-CASE structure
offered by Rick Main in the Vvol. 1,
No. 5 1ssue of Forth Dimensions, I
came across several instances where
the power of this tremendously useful
construct can be improved. The first
is where several options are defined
using the CASE and END-CASE structure,
but all remaining cases have a common
option. The other feature is where the
DO-CASE variable is to be tested within
a certain range of values instead of
strict equality to one value per CASE.
In order to maintain symmetry, some
renaming of the keywords was neces-
sary. The old structure looks like
this:

DO-CASE
W CASE..cceueeeess END-CASE
X CASE.vvvveeeees..END=CASE

Z CASE:..-...--...-EI‘ID_CASB
END-CASES

Hy structure looks like this:

DO-CASE
aCME..l.O........mD—CME
b ¢ CASES...¢¢eeese..END-CASES

J CASEe¢veveessees.. END-CASE
k 1 CASES....ee0e....END-CASES
mCASE..cseeeeees...END-CASE
OTHERWISE....eev
END-DO-CASE

The lower case letters indicate
operations that leave a 16 bit value on
the stack. DO-CASE is symmetrical with
END-DO-CASE, CASE is symmetrical with
END-CASE, CASES is symmetrical with
END-CASES and OTHERWISE, well....

OTHERWISE is useful when there
are several courses of action for

certain values of the DO-CASE variable,
and a common routine for all the other
cases. This closes any "loopholes" for
erroneous values that can occur. This
is easily implemented by putting the
common routine after the last END-CASE
and before the END-CASES in Rick's
DO-CASE structure, However, for
readability and documentation, I
definel a dummy word, OTHERWISE |,
(i.e. : OTHERWISE ; IMMEDIATE), to mark
the action. Making this work an
IMMEDIATE word assures that run time is
not affected. OTHERWISE must be used
at this particular point in the DO-CASE
structure, and has no meaning or usage
anywhere else.

The need to test for equality to a
value within a range leads to the
CASES structure. whereas x CASE tests
the DO-CASE variable (VWCASE) for x =
VCASE, lo hi CASES tests WASE to see
if it satisfies lo < WASE < hi. If
VCASE is within the range of the lower
boundary, lo, and the higher boundary,
hi, then the appropriate statements are
executed within the CASES...END-CASES
statement (this is the newer word -
don't confuse it with Rick's END-
CASES) . If VCASE is out of range,
these statements are skipped and
execution resumes after the END-CASES
(new word) statement.

The listing of the structure is in
the figure (see enclosure). The minor
changes include - changing the name of
END-CASES, making a dummy word called
OTHERWISE, and defining the new word
CASES.,

The simplicity of CASES does not
reflect the time it took to get it
working. (A fairly lengthy interactive
Forth debugger was written to help with
the develoment). The basic idea is to
subtract the upper limit from VCASE
minus one and see if the result is zero
or positive (i.e., the carry flag IS
set). If the carry flag IS set, then
the result is out of range and the
Forth instruction pointer (kept in

FORTH DIMENSIONS II/3

Page 64

the BC pair) has to be incremented so
that the next "instruction" executed
will be the one after END-CASES. The
action is the same as when VCASE does
not match in the CASE statement. If
the carry flag is NOT set, then VCASE
is less than or equal to the upper
bound and possibly in range. If
VCASE is less than the upper bound, the
lower bound 1is subtracted from VCASE.
If the result is negative (i.e., carry
is NOT set), then WASE is out of range
and IP is incremented to resume after
END-CASES. If the result is positive
or zero (i.e., the carry flag IS set),
then WCASE is between or equal to the
upper and lower boundaries. In this
case, the statements between CASES and
END-CASES are executed. At END-CASES,
execution jumps to after the END-DO-
CASE statement and continues.

Two 1interesting concepts were
included in this implementation. The
first was the use of the assembly
language CALL. The ' (tick) causes the
code field pointer of the next word to
be placed on the stack. The Forth CALL
takes this address from the stack ard
assembles the CALL opcode and the
address into the dictionary. At run
time, the call to the -TOP subroutine
is executed, and the 8080 program
counter is pushed on the top of the
stack. Within -TOP, the H POP takes
the return address to HL, and then
exchanges it with the top item (the
boundary) so that the return address
will be on top of the stack when RETurn
is executed.

' APTER-END-CASES leaves an address
on the top of the compile time stack
which is assembled into the dictionary
by the JMP in code CASES. At run time,
this AFTER-END-CASES segment serves as
an extension to machine code in code
CASES. Although this type of program—
ming is a GOTO type of construct, it is
used here to keep the definition of
code CASES short. It also adds insight

as to the intent of extended segment by
the use of a name. My advice to other
programmers is to use this jump around
feature very sparingly, so as to remain
in keeping with the concepts of struc-
tured programming.

The TEST for the new DO-CASE is
listed on screen 153. It differs from
the program that Rick submitted in that
the various variables are to be entered
on the stack before executing TEST.
This way, all 65,536 possibilities can
be tried instead of only the 128
available from an ASCII keyboard.

All of the following was done using
Zendex SBC~-FORTH V 1.0 for an 8080
processor.

A final note is in order. The
earlier DO-CASE had a bug in it per-
taining to the address used to store
VCASE. HNotice that my routines deleted
the ' (tick) which preceded VCASE 1in
lines 3 and 4 of the first screen that
Rick sent (see Vol. 1, #5 of Forth
Dimensions, pg. 51). This is because '
VCASE causes the address of the para-
meter field to be put on the stack,
rather than the location of VCASE in
the RAM area. Although the earlier
DO-CASE works, fetching VCASE always
yields a zero.

Bob Giles
Magnetic Media, Inc.
Tulsa, OK

Judges' Comments -

More of an extension of previous
work than a new CASE.

Page 65

FORTH DIMENSIONS 11/3

SCREEN 150

0 (DO-CASE STATEMENTS 4-4-80 BG)
1 BASE Ce
2 VOCABULARY FORTH+ FORTH+ DEFINITIONS
3
4 (DO-CASE CASE END-CASE CODE DEFINITIONS)
5 0 VARIABLE VCASE
6 CODE DO-CASE H POP VCASE SHLD I INX I INX NEXT JM?
7 CODE CASE W POP VCASE LHLD L A MOV W 1+ CMP
8 0= NOT IF I LDAX I 1+ ADD A I 1+ MOV NEXT JNC
9 I INR NEXT JMP THEN H A MOV W CMP
10 0= NOT IF I LDAX I 1+ ADD A I 1+ MOV NEXT JINC
11 I INR NEXT JMP THEN I INX NEXT JMP
12 CODE END-CASE I LDAX A L MOV I INX I LDAX A H MOV
13 H PUSH I POP NEXT JMP
14 BASE C! ;8 { END CODE DEFINITIONS)
15 (COPIES FROM FCRTH DIMENSIONS V1-5 pg 50/51 BG 4-4-80)
SCREEN 151
0 (DO-CASE EXTENTIONS 6-2-80 BG)
1

2 CODE -TOP H POP XTHL XCHG E A MOV CMA A E MOV D A MOV
3 CMA A D MOV D INX D DAD RET

4 (NOT TO BE CALLED FROM HIGH-LEVEL)

S5 CODE AFTER~-END-CASES B LDAX C ADD A C MOV NEXT JNC

6 B INR NEXT JMP

7

8

CODE CASLS VCASE LHLD H DCX XCHG ' -TOP CALL
9 ¢S IF D POP ' AFTER~END-CASES JMP THEN
10 VCASE LHLD XCHG ' -TOP CALL
11 CS NOT IF ' AFTER-END-CASES JMP THEN B INX NEXT JMP
12
13 CODE END-CASES I LDAX A L MOV I INX I LDAX A H MOV H PUSH
14 I POP NEXT JMP
15 ;S
SCREEN 152
0 (CASES&OTHERWISE EXTENSIONS 5-22-80 BG)
1 (FORTH+ DEFINITIONS - COMPILER DO-CASE STATEMENTS)
2
3 : DO-CASE COMPILE DO-CASE HERE 0 0 , ; IMMEDIATE
4 : CASE COMPILE CASE SWAP HERE 0 C, ; IMMEDIATE
S : END CASE COMPILE END~CASE HERE 0 , SWAP HERE
6 OVER - SWAP C! ; IMMEDIATE
7 (COPIED FROM FORTH DIMENSIONS V1-5 pg 50/51 BG 4-4-80)
8
9 : CASES COMPILE CASES SWAP HERE 0 C, ; IMMEDIATEL
10 : END-CASES COMPILE END-CASES HERE 0 , SWAP HERE OVER - SWAP
11 Cci{ ; IMMEDIATE
12 : OTHERWISE ; IMMEDIATE { NULL DEFINITION)
13 : END-DO-CASE BEGIN HERE SWAP ! -DUP 0 = END ; IMMEDIATE
14 FORTH+ ;S
15
SCREEN 153
0 (TEST FOR EXTENDED DO-CASE 5-22-80 BG)
1 BASE C@ HEX
2 : MONITOR DO~CASE
3 40 CASE QUIT END-CASE
4 41 CASE ."™ AAAA " END-CASE
5 42 CASE ." BBBB " END-~CASE
6 43 CASE ." CAT " END-CASE
7 30 39 CASES ." NUMBERS " END-CASES
8 OFE 102 CASES ." CROSS * END-CASES
9 OTHERWISE ." NOT TESTED *
10 END-DO-CASE ;
11
12 : TEST BEGIN DUP MONITOR 0 = END ;
13
14 BASE C! ;
15

FORTH DIMENSIONS II/3 Page 66

ENTRY FOR THE
FIG CASE CONTEST

Arie Kattenberg

An Overview of the CASE Statement

Externally the CASE statement looks
like:

m n CASE eees. ESAC
k CASE .seceves ... ESAC
1 CASE .v.veeeese. ESAC

ENDCASE

- If a comparison is not ‘true'
(m#n) the m stays on the stack and
is tested against the next CASE.

- If a CASE is met the m is dropped
and after the case body is executed,
the ESAC transfers control to words
following ENDCASE.

- If none of the CASES is met, ENDCASE
has compiled a DROP that now drops
the m instead of one of the CASES
doing that.

If we want explicitly some (stack)
operations to be done when none of the
cases is met, the m that remains on the
stack there would be bothering. We

then use:

m n CASE 6 8000 ¢0 00 E‘SAC
k CASE seo s e N OO PSS ESAC

1 CASEcc0.... ESA
OTHER ..v.ee.... ENDCASE

Now the ‘OTHER' has compiled a
drop for the m and ENDCASE does not
compile a drop.

In both the above examples we can
nest other case structures in any of
the case bodies. This is another
reason for using 'OTHER' sometimes.

Though this is in no way essential
to the above structures I have chosen
a high level branch in the condi-
tional branch that is compiled by
CASE (i.e. (CASE) manipulates the
return stack contents to effectuate a
branch). Now it is simple, machine
independent and self explaining to make
words like:

>CASE <CASE CASES ODDCASE etc.

that can take the place of CASE in the
above examples. (Of course this can be
done using machine language conditional
branches for these elements just as
well.)

By the way: The m, n, k and 1 in the

examples may be any amount of FORTH
that puts a number on the stack.

Internally making a picture of a
compiled CASE structure: (e.g.)

address contents (at compile tize...)

increasing .
senoty lic
sddresses n

lit

n
(case)
~-$ CASE

bzanch ESAC
ee-$
xx 3 lit
k
(case) CASE
yy-$

branch
ee-$ ESAC
yy ¢ lit

N 4
{case)
z32-$
eses CASE

b;;;éh ESAC branch ESAC

ee-$ ot we ce-$

3z : drop eNOCASE Find 2z : drop OTHER

et 3 ... here:

Page 67

e : ..o ENDCAST

ﬁ'tnra.- LR R N Ve

'EB.... 1M ewNrE l

5
L]

[F 2RI TR TR

1

e i bt b

Instead of the (CASE) cfa's we may find
examples of:

(>CASE), (<CASE), (CASES) etc.
there in a more advanced exanmple.
The m, n, k, p here are compiled

literals, but there may be all sorts of
FORTH compiled there.

Source definitions in fig-FORTH words

£2 .00

CASE control structure
BRAM

pid} 2+ SWAP

IF SWAP DROP 2 ELSE OUP & €@ THBEN SWAP ¢+t ;

{ Complete a pending forward branch *)

OVER - SWAP 1 ;
(Compiled by CASE, do a test and conditionally branch *)
OVER = IBRAN ; ~

(Execute until ZSAC if Key-2 equals Case-1 *)
7COMP COMPILE (CASE) HERE 0 , S ; IMMEDIATE

{(Close @ CASE; Key is left if case not done*)
S ?PAIRS 0
COMPILE BRANCA HERE 0 , SWAP COBR & ; IMMEDIATE
ITHER (After last ESAC, if stack or nested CASES used thece *

4 7 PAIRS COMPILE DOROP 6 ; IMMEDIATE

AK-00Peb29 }
(Bi-level branch if BOT is zero, used Dy CASE *)

OBk
SERE
CASE)
SASE

ESAL

=3 4.0

IASE control structure AK-80redb 29)
CNDCASE (Close a CASE control structure *)}
OUP 4 = IP COMPILE OROP ELSE 6 ?PAIRS 4 THEN
BEGIN DUP 4 « SPe CSP & < AND
WBILE DROP COBR
REPEAT ; IMMEDIATE

COME TO FIG CONVENTION
NOVEMBER 29

An 'English' explanation of how
the words work:

ZBRAN
Finds 'true' or 'false' on the
stack. It fetches the address of the

second return stack number which 1s the
pointer (stored IP) in the list where a
branch can occur.

- If 'true' was on stack, the pointer
is incremented by 2 (making next
skip to the CFA following the
branch) and the second stack number
is dropped. (It was the 'key' to
the 'case'.)

- If 'false' was on stack, the pointer
is incremented by the value that is
found in the location where it is
pointing to (making NEXT to resume
interpretation of the list where
the branch was compiled at a new
location).

COBR

Finds an address on stack; a dis-~
tance from the actual DP value to that
address is compiled in the address.

(CASE)

Finds two numbers on stack, compares
these and leaves the 2nd on stack.
Then control is transferred to ZBRAN.
The CFA of (CASE) appears in compiled
lists as a relative branch (the rela-
tive jump following it in the 1list).

CASE

Has precedence and checks whether we
are compiling when we use it. It
compiles (CASE) and puts the address
following (CASE)'s CFA in the list,
on stack. It stores a temporary #
in that location and puts a 5 for
pair checking on the stack.

PORTH DIMENSIONS I1/3

Page 68

ESAC

Does a pair check on the 5 it
expects from CASE. It compiles a
BRANCH, puts a temporary @ in the
location following that BRANCH and puts
the address of that location on stack.

The branch that is half made by the
previous CASE is completed. For pair
check by the following ENDCASE a 4 is
put on stack; the change of check digit
(from 5 to 4) makes the nesting of
other case structures in CASE ESAC
possible. (ESAC has precedence.)

OTHER

Has precedence, it does pair check
on the 4 it expects from ESAC. It
compiles a DROP for the key (for the
CASES that are all not fulfilled when
this point is reached). The check
digit 6 is put on stack. The change
from 4 to 6 as a check digit signals to
ENDCASE that the 'OTHER' is used and it
makes nesting of other case structures
in OTHER ENDCASE possible.

ENDCASE

Checks for a 4 on stack; in case
there is a 4 the "OTHER" is not used
and we must compile a DROP here. If
there is not a 4 there must be a 6
(which is checked); it is replaced by a
4,

The rest of ENDCASE looks for
4's on stack that are placed there by
the previous ESAC's (since there may
be 4's on stack already before the
definition that contains the case
structure. ENDCASE also checks SP@
against CSP contents).

The incomplete branches from the
ESAC's are completed until none is
left.

Clossary entries for each word
in sheet B

ZBRAN mf -—— (if £ is true)
mf —~m (if f is false)

Procedure to perform the branch for
a high level run time conditional
branch in a CASE control structure.

If f 1s false (zero), the in-line
parameter following the compiled
reference to the run time conditional
branch is added to the stored inter-
pretive pointer (second word on the
return stack) to effectuate a branch.

If f is true, 2 is added to skip the
in-line parameter and m 1is dropped.
Used by (CASE), {(>CASE), (CASES)
etc.

COBR addrl —-

Calculate the branch offset from
addrl to HERE and store in addrl, thus
resolving a pending forward branch.

(CASE) m n ——— (if m equal n) Cc2
mn-—m (if m unequal n)

The run time procedure to condition-
ally branch in a CASE control struc-
ture.

If m equals n, no branching occurs
and NEXT interprets the words following
the branch offset in the dictionary
after the CFA of (CASE).

If m is unequal to n, m remains on
stack and NEXT resumes interpretation
with a new interpretive pointer value
according to the branch offset.

Compiled by CASE. For branching,
2BRANCH is used.

Page 69

FORTH DIMENSIONS 11/3

CASE m n —— (run-time, if
m equal to n) pP,C2
mn-—m (run-time, if

m unequal to n)
~—~ addr ¢ (compile)

Occurs in a colon-definition in
the form:

ENDCASE

or:
CASE ESAC
CASE .e.vveeeess ESAC

At run-time CASE selects execution
based on an equality test of the two
numbers on stack. If m equals n the
part until the next ESAC is executed
and then control is passed to after
ENDCASE. If m is not equal ton, m
remains on the stack and control passes
to after the following ESAC. The use
of OTHER and its ‘other' part are
optional. ENDCASE, or (if present)
JOTHER, drops the remaining m.

At compile time CASE compiles
{CASE) and reserves space for an
offset at addr. addr and c¢ are
iJsed later for resolution of the
offset and error testing.

ZSAC addrl cl —— addr2 c2
(compiling) P,C2

Occurs within a colon-definition
:n the form:

CmE tde 00 s e 0000 EAC
CmE ® ¢ 0000 0000 mm
CASE ® e 8000 b mm
ENDCASE

are

CASEeees0e ESAC
CASE .,e.ccs... ESAC

CASEe..... ESAC

At run-time ESAC executes after the
part selected by the CASE it pairs to.
ESAC branches over the following cases
and resumes execution after ENDCASE.

At compile time ESAC compiles a
BRANCH, reserving room for a branch
offset at addr2, leaving addr2 and c2
for later resolving of the offset and
error checking. ESAC also resolves the
pending branch from the previous CASE
at addrl, storing the ofset from addrl
to HERE.

OTHER m ——- {(run-time) C,P
cl — 2 (campiling)

Occurs within a colon definition
in the form:

CASE ® 9 &0 008000080 BSAC
CmE o & 00 00 000 ESAC
CASE .cevoseveses ESAC
UI'HER e % 00 000 2000 EN[x:ASE

At run-time OTHER executes when
none of the cases is met. OTHER drops
the m against which the cases were
tested.

At compile time OTHER compiles a
DROP. OTHER also checks the cl fram
the last ESAC for error testing and
puts c2 on stack to signal ENDCASE that
OTHER has been used and to make nesting
of new case structures possible between
OTHER and ENDCASE.

ENDCASE addrl cl addr2 ¢l
addrn-1 cl addr-n ¢c2 —-

(compiling) P,C
m -—— (run-time, no OTHER used)

Occurs in a colon-definition 1in
the form:

FORTH DIMENSIONS II/3

Page 70

CASE

ENDCASE
or:

CASE s.ceveessss ESAC

CASE ..ccveenese ESAC

CASE

ESAC

ESAC
ENDCASE

At run-time ENDCASE serves as the
destination of all forward branches
from the ESAC's in the case structure.
If OTHER does not occur, ENDCASE drops
the m that remained on stack when no
case is met.

At compile time ENDCASE compiles
a DROP if OTHER was not used in the
case structure, which can be known from
the value of C2. ENDCASE resolves all
the pending forward branches from the
ESAC's by storing the offset from addri
to HERE in addri for addrl thru addrn.
The Cl's indicate the presence of such
an unresolved branch as long as the
control stack pointer is not passed.

Exanples of the use of this statement

SCR #i02

0 (Examples of CASE control structure

SCR $103

4 (Czamples of CASE control structuce

1 3 EXAMPL (3ome tex% is printed, selected by numbaer -1 & nuaber -2 ¢}
2 S CASE 12 CASE ° This* ESAC

3 J Case PR Y i ESAC

4 OTHER ."° only* ENDCASE ESAC

S 18 CASE 2 CAsSE . a very® ESAC

[7 CASE .* silly*

7 OTEER .° example” ENDCASE ESAC

8 OTHER 2 CASE .* of the use" ESAC

9 9 CASE ." of nested” ESAC

10 QTHER .* <cases” ENDCASE EIDCASE ;

AK-80feb 29)

1+ SEL (Write nuasber -1 between 0 and 9 as text *)
2 0 CASE ® Zero® ESAC
k 1 CASE ¢ One" ESAC
4 2 CASE * 1Two" ESAC
S 3 CAst * Three" ESAC
[4 CASE .* rour*® ESAC
7 5 CASt ¢ rive" £SAC
[] 6 CASE .* sSix”® ESAC
9 7 CASE ® Seven" ESAC
10 8 CASE .° Eight* ESAC
11 9 CASE * NINE® ESAC

.* Outside range 0-9° ENDCASE ;

Short discussion on the case
statement presented here

The history of this case stategent
is outlined below:

A first try for CASE was a replace-
ment of IF so we could produce case
structures like:

Ia. ... CASE THEN ...

«eo CASE THEN ...

«so CASE THEN DROP ...
or
ib. ... CASE ELSE

... CASE ELSE

+e» CASE ELSE DROP

THEN THEN THEN

At run-time, Ib is the faster
one since no other cases are tested
once a case is cone. A disadvantage
however is the necessity to write the
THEN ... THEN ... THEN series.

An improvement on Ib was to organize
the DROP THEN THEN ... THEN by a new
compiler word:

«es CASE ELSE

ees CASE EISE

«oo CASE ELSE
ENDCASE

II.

Page 71

FORTH DIMENSIONS 11/3

AK-8UFen29%)

]

But since ENDCASE can only see
by the 2's for ?PAIR on stack how
many branches have to be completed this
structure II cannot be nested inside
... IF ... ELSE ... THEN or inside an
other CASE ... ELSE.

This could be avoided by making a new
"ELSE" and then using other numbers
for ?PAIR checking in the structure.

By changing the number for pair
checking in the new "ELSE" (ESAC), also
nesting in other case structures 1is
possible:

I.II. ... CASE 7 PAIRS "a* ZSAC “?PAIRS °“b"

.. CASE ESAC
. CAsE EZSAC

?PAIRS *b* ENDCASE

Now, a remaining problem is the
part between ESAC (the last) and
ENDCASE. There the number against
which the cases are checked is still on
stack, so we cannot easily manipulate
the stack there; also, at compile time
we have the "b"'s for ?PAIR checking on
stack so we cannot nest a new case
structure there.

To solve these two problems we made
the optional "OTHER" that performs the
DROP at run time and that at compile
time changes again the "check number"
to inform ENDCASE that the DROP already
has been compiled and to make nesting
of other case structures possible.

Of course the nesting problem could
have been solved by using an opening
word like is done in the example on
page 50 and 51 of Forth Dimensions,
Vol. 1, No. 5. But this forces the use
of an extra word at compile time. This
opening word obuld e.g. store the top
stack word on the return stack (mot in
a variable as is done in the example!,
since this prohibits nesting of case
structures). But I doubt whether it is
an advantage to remove the number
against which the cases are checked
from the stack: This costs (run) time,
makes it difficult to change that
number between an ESAC and the next

CASE (after all, why should one not be
allowed to do this) and the number is
not in the way as far as I can see.

The use of a high level (CASE) and
the use of the separate ZBRAN there are
not mandatory.

To have a fast executing case
structure one may rewrite (CASE) in low
level without affecting the essence of
this case structure.

However, as presented here the
structure 1is machine independent for
standard fig-FORTH's.

Also this high level (CASE) makes it
easy to extend the possibilities,
e.g':

3 (>CASE) OVER < ZBRAN ; (JRANCE IF SMALLER THAN)
1 DCASE COMPILE (>CASE) HERE 0 , 5 : IMMEDIATE

and we have a new type of case.

or:

¢t (CASES) ROT >R R < SWAP R > AND R>
SWAP IBRAN ; (BRANCH IF NOT IN RANGE)
: CASES COMPILE (CASES) BERE 0 , S ; IMMEDIATE

etc. Any odd case you expect to use
more than once can be incorporated in
the set and used just like CASE.

;S

P.S. In re-reading all this I notice
that "?COMP" is not needed in the
definition of CASE; please omit.

P.P.S. My native language is Dutch;
please forgive me any errors in the

language.

Arie Kattenberg
Utrecht, Netherlands

Judges' Comments - This entry has a
number of interesting ideas in it and
could be useful to developers. The
presentation is a bit hard to follow in
places. A plus is the short history of
the development of this CASE structure
through several earlier forms.

FORTH DIMENSIONS II/3

Page 72

=CASE CONTEST STATEMENT=

George Lyons

This entry submitted to the FIG
Case Statement Contest 1s 1limited
to providing a compiler syntax for
writing equivalents of ALGOL "case" and
"switch" statements in FORTH and some
additional words to use in conjunction
with ALGOL style case expressions. As
such it does not solve all the problems
posed in the contest announcement.

In formulating a case expression
syntax the first decision was to treat
case lists as in-line or literal
expressions within : definitions rather
than provide a special defining word
creating words of a case list type.
This increases flexibility of use at
the expense of storage saving otherwise
obtainable by exploiting the code
address field of a case-type word. A
second decision was to allow use of a
list either to execute a case selected
at run time or to compile the execution
address of the case--for use in more
complex compiler features. Storage for
a list which was to be only executed
turned out less than when compiling so
different commands are provided for
these two circumstances. A third
decision was to include in the compiled
cade for a case list no number-of-cases
parameter; hence no checking of the run
time inputsubscript's validity is done
in executing the cases. Instead
separate words ?INDEX and EXCEPT are
provided to do this checking, taking
more storage when used than if their
functions were built into the case list
code, but saving time and space when
they are not needed, as when the
validity of the input is established
elsewhere in a program.

The in-line case lists are handled
as one instance of a general approach
to in-line list functions in which a
list is represented in the form ccc(
...list data...). cc(is a Word which

begins compiling the list and) is
introduced as a word, in addition to
its role in comments, to terminate the
list. Different words ccc(perform
different functions involving data
or code stored 1in the list. The
parenthesis was defined as a word
because of the similarity of the run
time process of skipping around data
embedded within a definition and the
campile time skipping past a comment in
source code. The general approach
compiles all 1lists with an execution
address at the front which processes
the data and returns controls to
the point following the 1list; the
address of this return point 1s stored
immediately following the execution
address at the beginning, and it has
more uses than just returning control.
When a list contains variable length
elements a vector of addresses of the
elements is appended to the end of the
list in reverse order. The case lists
are an example of this structure in
which the data is a list of variable
length code segments, written for
instance using EXECUTE(CASE case 0
code... CASE casel code... CASE ...).
The case compiling words such as
EXECUTE(are written using utility
Words available for building additional
functions along the same lines.

Examples of the latter are some
Words that might be used in conjunc-
tion with EXECUTE(...). These are
mentioned briefly here, and some are
implemented in the glossary and code
section.

[n] EXCEPT EXECUTE(...)
(compile time source)

At run time EXCEPT will check the
subscript on the stack intended to
select a case in EXECUTE(...} and
replace it by zero if negative or
greater than n. Case zero can then be
especially written to handle these
exceptions.

W+ addr n --- addr+2*n

Page 73

FORTH DIMENSIONS II/3

Address arithmetic operation for
byte addressable computers. Increments
an address adr by n words. Can be
implemented 1n machine code using shift
operations instead of multiply.

W+ 2 %+
W- addr n --- addr-2*n

Address arithmetic operation for
byte addressable computers. Decrements
an address adr by n words. See W+.

COMPILES —- addr n P,C

Used in conjunction with EXBCUTES in
a : definition to combine a procedure
performing compiler operations with run
time code for the procedure compiled,
in a single definition. In the form :
cec ... COMPILES ... EXECUTES ... ;
IMMEDIATE, ccc performs the operations
up to EXECUTES at compile time; these
compile time operations include OOM-
PILES which compiles the address of the
code following EXECUTES. EXECUTES
places at that address a pointer to the
code for : definitions, so that the
code following EXECUTES is in effect a

definition without a name field.

:COMPILES ?CCMP COMPILE COMPILE BERE n 2 ALLOT ; IMMEDIATE

EXECUTES addr n -—- P,C

See COMPILES. Compiles ;S8 to
terminate the compile time part of a
dual definition, and stores the address
of the next dictionary location in
the space reserved by COMPILES.
Compiles the address of the code for :
definitions to begin the run time part
of the wWord.

+ EXECUTES ?COMP | HERE 2 -] COMPILE 18 n ?PAIRS BERE
SWAP | COMPILE { € , | ; IMMEDIATE

[n] ?INDEX EXECUTE(...)
{caompile time source)

At run time ?2INDEX will issue a
system error message if the subscript
on the stack intended to control
EXECUTE(is invalid, instead of writing
a special case zero in the case list.

PIND(nl , n2 , n} , ...) EXECUTE(...)

FIND(is another example of the
in-line expression approach which
performs the inverse of a simple
vector. It searches at run time for a
match to the stack item in the list,
returning either its subscript or zero
if not found. Again, case zero can be
written to handle the exceptions.

INTERVAL(nl , n2 , n3 , ... nk)
EXECUTE(...)

Another in-line expression type,
INTERVAL(contains a vector of values
in ascending order dividing the number
domain into the intervals between
them. At run time a subscript is
returned identifying the interval in
which the stack item falls, and the
item itself is preserved for processing
by the selected case.

RANGE(nl , ml , n2 , m2 , ...)
EXECUTE(...)

FORTH DIMENSIONS I1/3

Page 74

Similar to INTERVAL(except that
each n,m pair defines a separate
range, and a subscript is generated
identifying the first range found which
embraces the stack item, or a zero if
outside all of the ranges.

n MENU ccc EXECUTE(...) ;

MENU is a defining Word to create a
menu—driven application named ccc which
at run time will present screen n to
the user, who will select options by
entering a number, which is finally
processed by the case list compiled
within ccc.

Glossary and Code

The implementation below is written
entirely in high level code assuming a
byte addressing machine. Literal "n"
used with ?PAIRS is left unspecified
for consistent specification of all
?PAIRS values.

BEGIN(=== addr n ff n

Used in certain compiling words to
begin compilation of an in-line, or
literal data structure within a
definition. The next word in the
dictionary is reserved for the address
of the location following the entire
structure, to be filled in by) at
address addr. n is for compiler error
checking. ff marks the stack so that
other compiling words may push pointers
to internal parts of the data block, to
be appended to the end of the block by
). See).

: BEGIN ?COMP HERE n 0 2 ALIOT . ;

) addr n ff addr0... n ——-
(when used as a Word)

Has two entirely different uses.
One terminates a comment begun by (, in
which case it is not processed by the
compiler. When used outside of a
comment it completes compilation of

an in-line data structure begun by
BEGIN(. addr0... 1is a possibly empty
list of addresses of points internal to
the data block left by other campiling
Words; if present it is appended to the
data in reverse order. The address of
the location following the data is then
stored back at 1ts beginning point
addr. Also resumes compilation mode.

)} n TPARIS BEGIN - DUP WHILE , RIPEAT n ?PARI5 HZIRE SWAP
I} 1 IMMEDIATE

LIT(---

Used in Words processing in-~line
data structures to set up the return
and computation stacks for accessing
the data and branching around it. The
Word in whose definition LIT(appears
must be used immediately in front of an
in-line data block, so that the address
of the location at which to resume
control 1is found in the following
location; see BEGIN(. Conseqguently on
entry to LIT(the return stack contains
the address of the code following LIT(
itself on top and the address of the
data block just below. LIT(replaces
the second return stack item by the
address of the code following the data,
and pushes the address of the first
data item onto the camputation stack.
Also see)LIT.

: LIT(R R> DUP @ >R 2+ SWAP >R ;

JLIT —-

Similar to LIT(except returns on
the computation stack the address
of the last word in the data structure
instead of the first word, for access-
ing any address vector stored there in
reverse order by).

: JLIT R> R> @ DUP >R 2 - SWAP >R ;

EXECUTE(--- addr n ff n (compile) P,C
n -— (run time)

Used within a : definition to define
a list of routines, cr cases in high
level code in the form:

Page 75

FORTH DIMENSIONS II/3

W]

EXECUTE(CASE case0... ;5 CASE casal... 18 ... ;5)

At run time case n is executed and
control returns beyond the 1list.
Unpredictable results occur if n is
not a valid subscript at run time,
Executes BEGIN(at compile time.

EXECUTE(?COMP COMPILES BESIN(EXECUTES JLIT W- 9 >R ; IMMEDIATE

CALL(--—- addr n ff n (compile) P,C
n —- {(run time)

Similar to EXECUTE(except the case
routines are in assembly language in
the form CALL(CASE case0... CASE
casel... ...). Invokes the assembler
vocabulary and suspends oompilation,

CALL(?COMP COMPILES BEGIM({COMPILZ! ([COMPILE] ASSEMBLER
CXECUTES)LIT W- @ SP? 2 - SWAP DROP EXECUTE: IMMEDIATE

CASE addr n ff addr0... n -
addr n ff addr0...addrl n P

Used to begin each cae in a case
list defined by EXECUTE(or CALL(.
Adds the address of the next case addrl
to the list of case addresses addrO...
on the stack, using n for error check-
ing.

: CASE n ?PAIRS HERE n ; IMMEDIATE

CMPILE(—- addr n ff n (compile) P,C
n —- addr (run time)

Used within a : definition to
jefine a list of routines, or cases in
either machine code or high level code
:n the form COMPILE(:CASE ... ;S ...
CODECASE ...) which returns at run
time the execution address of the case
~whose subscript is on the stack. The
input subscript must be valid or
inpredictable results will occur. To
actually compile the execution address
returned use ,. See also EXBECUTE(and
_ITERAL(. Compiles using BEGIN(.

SMPILE(?COMP COMPILES BEGIN(EXECUTES)LIT W~ @ ; IMMEDIATE

:CASE addr n ff addr0... n —-
addr n ff addr0... addrl n P

Used to begin each high level
code case in a case list defined by
COMPILE(. Executes CASE and compiles
the address of the code for executing :
definitions. The routine begun by
:CASE should be terminated by ;S as in
EXBECUTE(expressions.

:CASE (HERE 2 -] {COMPILE] CASS | COMPILE [@ , | ; IMMEDIATE

CODECASE addr n ff addr0... n ———
addr n ff addr0...addrl n P

Used to begin each assembly code
routine in a case list defined by
CMPILE(. Executes CASE and campiles
the address of the next dictionary
location (as in the code field for a
cobe definition). Compilation is
suspended and the assembler vocabulary
invoked as in CALL(. A jump to NEXT
within a machine code case will resume
high level execution following the case
list.

: CODECASE [COMPILE] CASE 2 ALLOT HERE DU? 2 - !

{COMPILE] [([COMPILE]| ASSEMBLER ; IMMEDIATE
LITERAL(--- addr n ff n (compile)
n —- n2 (run time) P,C

Used within a : definition to define
a vector of 1l6-bit values. These
values may be made Word execution
addresses using the form

LITERAL(Word0 Wordl Word2 ...)

or may be made literal numbers using
the form

LITERAL([n0 , n1 , n2, ...])

At run time the element whose sub-
scription is on the stack is returned
(without checking the validity of the
stack value). When used with EXECUTE
in the form LITERAL(...) EXECUTE the
same result is achieved as using
EXECUTE(...) except that storage
requirements are less because no extra
addresses are needed at the end of the
vector. Uses BEGIN(to compile the
list.

FORTH DIMENSIONS I1I/3

Page 76

‘LITERAL(?COMP COMPILES BEGIN{ EXECUTES LIT{ W+ 3 ; IMMEDIATE

EXCEPT n -—-
1 ---n

{compile)
{(run time) P,C

Used before an in-line case list or
literal vector defined by EXECUTE(...)
or similar Words, in the form [n]
EXCEPT. Compiles an execution address
and the value n, presumed to be the
number of caes or vector elements in
the subsequent in-line expression. At
run time replaces any input value that
is negative or greater than n by zero,
allowing case or element zero to
represent the "exceptions." This may
be an error message or other explicit
operaticn, or may simply bypass the
entire case list by leaving case zero
empty, i.e. compilinjy high level cases
as ;S and machine code cases as a jump
to NEXT. The EXCEPT function is not
built into the case list expression
code itself to allowing saving the
storage when it 1s not needed.

: EXCEPT >R COMPILES R> , EXECUTES R> DUP 2+ >R OVER 0< IF
DROP DROP 0 ELSE ¢ OVER < IF CROP 0O ENDIF ENDIF ; IMMEDIATE

FIND(--- addr n ff n (compile)
nl —- n2 (run time) P,C

Used in a : definition to define an
array similar to LITERAL(but to
perform the reverse operation at run
time, i.e. the value is on the stack
and the subscript is returned, or zero
if not found.

t PIND(COMPILES BEGIN(2 ALLIT { ¢iement 2470 reserved)
{ for copy of input) [COMPILE| ! ©RECUPED LIT{

OVER OVER | SWAP OVER R 2 ~ DO D2 L @ = IF DROP I LEAVE
ENDIP -2 +LOOP SWAP - 2 / ; [MMEDIATE

INTERVAL(—- addr n ff n (compile) P,C
nl --~ nl n2 (run time)

Used in a : definition to define a
literal vector of interval boundary
points in increasing order; at run time
the subscript of the smallest boundary
above nl is added to nl already on the
stack, to control a subsequent case
list processing nl. Compiles using
BEGIN).

: INTERVAL COMPILES BEGIN((COMPILE) ([EXECUTES | LIT(

OVER OVER R 2 - DO I OVER I @ < IF LEAVE ENDIF
2 +LOOP SWAP DROP SWAP - 2 / ; IMMEDIANTE

Case Contest Entry
George Lyons

APPENDIX

The words COMPILES and :CASE above
share a common function which might
preferably be in a separate Word by
itself. That function is compiling
into the next dictionary location the
code address used in definitions.
Rather than define a new Word, however,
this function may be added to the
existing definition of the : operator,
as the function tc be performed when
STATE is the campiling mode, in con-
trast to the reqular function performed
when STATE is the execution mode, as
it is when a definition is begun using
:. Similarly, the word CODE can be
expanded to include a function to be
performed in the compile state which
consists of campiling the code address
of a (QODE definition (the address of
the following location...), setting
STATE to execute and invoking the
ASSEMBLER vocabulary for beginning
assembly language programming immed-
iately following. Revised definitions
from the case statement glossary above
would then be:

: EXECUTES ? COMP COMPILE :S n ?PAIRS HERE SWAP ¢
{COMPILE ! : : IMMEDIATE

The Words :CASE and CODECASE are
eliminated and the syntax for COMPILE(
is:

COMPILE(CASE : ...high level case...:S ... }
COMPILE(CASE COQE ...zachine c3de case... .. }

[19.1.1-7T .

George Lyons
Jersey City, WJ 07302

Judges' Camments -~ George got off to
great start but went on to solve
more problems than CASE, i.e. compili
in-line machine code by CODECASE,
There are numerous ideas here, dese
ing of further analysis and examples
CASE.

L P LTI '

Page 77

=A FORTH CASE STATEMENT=

R. D. Perry

The Case Statements presented
here are an extension of the FORTH IF
Statement. The structure of the CASE

SCR § 83
Statement is such that it allows an o (mORE CASE roP 800322)
N-way branch as contrasted to the IF] : BEGIN-CASES 7COMP 0 4 ; IWMEDIATE
statement two way branch. This version 3: CASE ?COMP { EL.4) 4 ?PAIRS { EL)
: 4 COMPILE N®BRANCHE HERZ 0 , (EL,NBL)
allows a CASE to be tested against a s S ; INMEDIATE { EL, NBL,S5)
: [
single value or a range of values. It 7 : BANGE-CASE 7COMP (EL.4) 4 ?PAIRS (EL)
4 \ 3 8 COMPILE NRANGE=BRANCH HERE 0, { EL,NBL)
' does not require contiguous values fo; 3 SV iweiaze (eLws)
0
- the tests. The valug or range o 11 : ELSE-CASE 7COMP 4 2PAIRS (EL)
R values to be tested against are deter- g _CONPILE DROP 0§ ; [WAEDIATE (EL.0.5)
- mined at run-time, this allows vari- 14
: ables to determine CASE selection. No 1
; preprocessing is required as with the
. vector selection approach. It will
r execute faster than an IF statement
; preceeded by preprocessing (Example: = scr 0 24
s IF) assuming code implementation of 0 (MORE CASE ROP $00322)
-] - 1 LUD~-CASE WCOMP % ?PAIRS COMPILE BRANCH (EL,BL)
- N=Branch and NRANGE=BRANCH. 2 ' " DoP { EL.SL.BL.)
= 3 IP BERE 2+ OVER - SWAP ! (EZL)
e) . 4 TLSE DROP
I became interested in the CASE : TEZN WERE SWAP , 4 (NEL,4) : IMMEDIATE
G) , .
- Statement while implementing a CRT 7+ BAD-CASES ICOMP 4 TPAIES L EL) asts)
- , Lo, - 0= '
- Screen Editor for FORTH Editing and 9 CoNPILE DROP
A3 10 SEGIN DUP
, Word Processor use. 11 WSILE DUP § SWAP HERE OVER - SWAP !
€ 12 REPEAT DROP ; IMMEDIATE is
13 (NMANES OF STACK ITEMS)
14 EL => END LINK NEL => NEW END LINK
15 BL -> BEGIN LINK MBL ~-> MNEW BEGIN LINK
SCR § 81
O (CASE STATEMENTS RDP 800322)
1 HEX
2 CODE N=BRANCH { IF BOT NOT EQU SEC BRANCH FROM INLINE LITERAL)
- 3 INX, INX, PE ,X LDA, BOT CMP, 0=
=) 1P, F? ,X LDA, BOT 1+ CMP, O=
- S IP, INX, INX, " OBRANCH 8 o (BUMP) JNMP,
- [ENDIE,
7 ENDIF, ' BRANCH JMP, C; SCR ¢ 03
[0 { CASE STATEMENT TEST RDP 800320)
9 CODE NRANGE=BRANCH (IF THIRD<SEC OF THIRD>BOT BRANCH FROM LIT) 1 &t TEST BEGIN-CASES
10 INX, INX, INX, INX, SEC, PC ,X LDA, BOT SBC, 2 1 CASE ° ONE® END~CASE
11 D ,X LDA, BOT l+ SBC, 0< NOT 3 2 CASE ° TWO® END-CASE
12 Ir, SEC, BOT LDA, FE ,X SBC, BOT l+ LDA, FP ,X SBC, 0< NOT 4 «9 9 RANGE-CASE * > NEG. TEN AMD ¢ TEN® END-CASE
13 IP, INX, INX, ‘' OBRANCH 8 o (BUMP) Jnup, BNDIP, [ELSE~CASE " OTHER® END-CASE
4 ENDIF, ' BRANCE Jnp, C: € END-CASES CR ;
15 DECIMAL --> 7 ;8
]
9 TYPE A NUNBER POLLOWED BY °TEST®, OUTPUT WILL BE
}: ACCORDING TO CASE ABOVE .
SCR ¢ 92 i;
¢ (CASE STATEMENTS RDP 600322 i;
1 == { REMOVE 7H1S LINE IF CODE VERSIONS NQT USED)
3 2 DECIMAL (R IS POINTING TO NEXT LOCATION)
3 : RsBRANCH
4 OVER =
ny S IP B> 2+ >R DROP
a § ELSE R> DUP @ + SR
- ? THEN ;
E. '
9 : NRANGE=BRANCH
V- 10 ROT DUP ROT (L,V,V,H) >
~& 11 IP SWAP CROP R> DUP @ + >R (OVER RANGE)}
i 12 ELSE DUP ROT (V,V,L) <
L) IF R> DUOP § ®© >R (UNDER RANGE)
14 ELSE R> 2+ >R DROP (IN RAKGE)
18 THEN THEN ; -->

FORTH DIMENSIONS II/3 Page 78

N=BRANCH nl n2 ——- (run-time, nl=n2)
nl n2 —— (run-time, nl<>n2)

The Run-Time procedure to conditionally
branch. If nl does not equal n2 the
following In-Line parameter is added to
the interpretive pointer to branch
ahead (or back) and n2 is dropped. 1If
nl equals n2 the interpretive pointer
is advanced passed the in-line para-
meter and both nl and n2 are dropped.
Compiled by CASE.

NRANGE=BRANCH nl n2 n3 --—-

(run-time, nl>=n2 & nl<=n3)

nl n2 n3 -—-nl
(run-time, nl<n2 or nl>n3)

The Run-Time procedure to conditionally
branch. If nl is less than n2 or nl is
greater than n3 the following in-line
parameter is added to the interpretive
pointer to branch ahead (or back) and
both n2 and n3 are dropped. If nl is
greater than or equal to n2 and nl is
less than or equal to n3 and nl, n2,
and n3 are dropped and the interpretive
pointer is advanced passed the In-Line
parameter, Compiled by RANGE-CASE.

BEGIN-CASES --- nl n2
(compile time)
Occurs in a colon-definition in the
form:
BEGIN—-CASES
... CASE ... END-CASE
.+« RANGE-CASE ... END-CASE
ELSE~CASE —~ END-CASE
END-CASES

At compile-time BEGIN-CASES places nl
and n2 on the stack. nl will later be
used by END-CASES to signal that there
is no prior END-CASE to link to. n2 is
used for error testing.

CASE nl n2 --- nl (routine, N1<>n2)

nl n2 --- (routine, nl=nl)
addrl N1 -— Addrl Addr2 N2
(compile time)

At Run-Time CASE selects execution
based on equality of the bottom two

values on the stack. If they are
equal signalling that the CASE is to be
executed, both nl and n2 are dropped
and execution proceeds through CASE.
CASE. If they are not equal only
N2 1is dropped and execution skips
to just after END-CASE. (See BEGIN-
CASES)

At Compile-Time CASE compiles N=BRANCH
and reserves space for an offset value
at addr2. addrl is the address for the
offset value of the last END-CASE. nl
and n2 are used for error testing.

RANGE-CASE
N1 N2 —- N1 (Run-Time, N1<N2) P,C2
Nl N2 —- (Run-Time, N1=N2)

addrl N2 —- addrl addr2 N2 (Campile-Time)

At Run-Time selects execution bases on
whether nl is in the range n2 to n3
(n2<n3). If in range execution pro-
ceeds through RANGE-CASE. If not in
RANGE execution skips to just after
END-CASE., (See BEGIN-CASES)

At Compile~Time RANGE-CASE compiles
NRANGE=BRANCH and reserves space for an
offset at addr2. addrl is the location
for the offset value of the last
END-CASE. nl and n2 are used for error
testing.

ELSE-CASE
nl — (run-time)
addrl nl ——- addr n2 n3

(compile-time)

At Run-Time nl is dropped and execution
continues through ELSE-CASE. (See
BEGIN-CASES)

At Compile-Time ELSE compiles DROP.
ADDR is the location for the offset of
the last END-CASE. n2 is used by
END-CASES to signal that the last case
was an ELSE-CASE. nl and n3 are used
for error testing.

ELSE-CASE —- (run~time)
addrl addr2 nl ---
addr3 n2 (compile time)

Page 79

FORTH DIMENSIONS II/3

At Run-Time causes execution to skip
o0 after END-CASES. (See BEGIN-
CASES)

1z Compile-Time uses ADDR2 to set the
2itset of the last CASE or RANGE-CASE
<> point to after this END-CASE.
-onolles BRANCH with an offset to be
Czlculated later by END-CASES. The
.ocation for the offset of the last
IND-CASE 1is temporarily stored in this
offset location and the new offset
location is put on the stack. N1 and
N2 are used for error testing.

END—-CASES
——- (run-time with ELSE-CASE)
n --- (other run-time)
addrl nl —- (compile-time)

At Run-Time drops a stack value if no
ELSE~CASE exists. Any END-CASE will
continue execution just after the
DROP. (See BEGIN-CASES)

At Compile-Time DROP is compiled and
all of the offsets from an END-CASE
are calculated and stored in their
proper locations. ADDR is the location
for the last offset for an END-CASE.
That location holds the address for the
prior offset and so on. The first
offset location holds a value (0) which
tells END-CASE that there are no more
offsets to calculate.

R.D. Perry
San Diego, CA 92106

Judges' Comments =~ This is quite a
complete and well documented entry.
The range-of-cases feature is well
done. Note that high level alterna-
tives are given for the 6502 machine
CODE words.

NEW PRODUCT

pico FORTH

HERMOSA BEACH, CA, JUNE 24, 1980
picoFORTHTM, a new subset of
polyFORTHTM is available for 1802 (disk
or PROM) and 8080 micro- processors.

Designed for interactive evaluation,
picoFORTH includes all the essentials
for programming, debugging, and testing
a single-task application. This
complete operating system features the
polyFORTH assembler, compiler, text
interpreter, editor, disk utilities, and
basic documentation. picoFORTH can be
upgraded at any time, either for a
single purpose (with one or more of
three g;ckages: Source, Target
CompilerTM or Mulititasker) or to full
polyFORTH. A File Management Option
package is also available. In addition
to the current versions, picoFORTH will
soon be implemented on the 8086, 6800,
and LSI-11 processors. Price for
picoFORTH is $495. Write or call Tom at
FORTH, Inc., 2309 Pacific Coast Highway,
Hermosa Beach, CA 90254 (213) 372-
8493,

NEW PRODUCT

ALPHA MICRO FORTH

This system implements the Forth
Interest Group language model, with
full-liength names to 31 characters, and
extensive compile-time checks.

In addition, the diskette includes
an editor, a FORTH assembler, and a
string package, in FORTH source. The
PDP-11 FORTH User's Guide, which

includes extensive annotated examples of
FORTH programming.

This FORTH system runs under AMOS.
The distribution disk is single
density. The complete system price is
$190: Professional Management Services,
724 Arastradero Road, Suite 109, Palo
Alto, California 94306, (408) 252-2218.

FORTH DIMENSIONS II/3

Page 80

——=CASE STATEMENT ——

william H. Powell

The case structure by R.B. Main
looks very powerful and flexible, but
it seems to me to be unnecessarily
complicated. My suggestion is for a
word that does OVER = IF for his word
CASE. This fits the existing FORTH
compiler very well. The example by
Main would read

: MONITOR

41 CASE ." ASSIGN " THEN

44 CASE ." DISPLAY " THEN

46 CASE ." FILL " THEN

47 CASE ." GO " THEN

53 CASE ." SUBSTITUTE " THEN
ELSE ." INSERT " THEN
DROP ;

You will note that I have made the
'insert' message unconditional. This
illustrates just how little need be
added to the present FORTH structure
and also how use of the present FORTH
conditionals can be harnessed to the
simple case structure as above. The
normal FORTH syntax holds, and can be
relied upon if case structures are
nested into other structures, or into
another set of case conditions.

This structure is neither the
optimum for speed nor bytes. On the
other hand we should avoid adding
to FORTH in such a way that the
nucleus and compiler grow any more
than necessary. 1 favor a CASE
structure that makes the program
clearer, encourages sound software
design and adds power to the language
without adding significantly to the
system software overhead.

Using the fig-FORTH model I need
ideally one more nucleus word, and one
for the compiler....

CODK /=BRANCH
X, INX, (Drop BOT only)
SEC, PE ,X LDA, 0 ,X SB8C, ' BRANCE 0= END,
r ,X LDA, 1 ,X S8C, ' SRANCH 0= EXD,
BUNP: JNP,

(Branch if SEC - BOT non-zero)

s CASR { nl n2 --- nl Case is executed if al = n2)
COMPILE /=BRANCH HEREZ 0 , 2 ; IMMEDIATE

You will see that /=BRANCH does the
same as OVER = IF and the case struc-
ture could be implemented without
introducing /=BRANCH but I think speed
and clarity better if one adds a cod-
word as I have.

W.H. Powell
Sawbridgeworth
Herts. (M21 INB
ENGLAND

Judges' Comments - Bill Powell didn't
submit this as a contest entry, but it
appeared in our mail just as the
contest started. We took the liberty
of including it as a mini-Case appro-
priate for the 6502.

»

-—-- HELP WANTED ----

PROGRAMMER FOR MAJOR PROJECT
Orange County, CA Location

Call or write: ANCON
17370 Hawkins Lane
Morgan Hill, CA 95037
(408) 779-0848

Page 81

——A CASE STATEMENT——

Major Robert A Sel:zer
OVERVIEW OF THE STATEMENT

CASE - The "CASE" statement is a
special form of the IF-ELSE-THEN that
permits the selection of one of many
cases depending upon the top word on
the stack being equal to a specified
word (the value that precedes "CASE").

u (stack value) ul (case value)
CASE (true action) ELSE (false
action) THEN

u (stack value) ul (case value)
CASE (true action) THEN

If u = ul, drop u,ul and execute true
action following CASE until ELSE or
THEN. Otherwise, drop ul but leave u
on stack and execute ELSE (false
action) or THEN if no EISE. Imple-
mentation is the same as IF-ELSE~THEN,
however each subsequent use of "CASE"
will save 2 words (4 bytes) over the
explicit use of OVER = IF DROP. CASE
use also improves the readability of
the source and if used often, will save
code as well as being more convenient
to the user.

SOURCE DEF INITIONS

See attached source listing. Note
that fig-FORTH word COMPILE should
replace FORTH, INC. word { back-
slash) or X (in later FORTH, INC
versions) and a 16 bit emplace word ,
(coma) replaces the 8 bit emplace
C, (C-comma). So, for SCR # 198,
line 6. The fig-FORTH definition for
CASE would be:

: CASE COMPILE {CASE) COMPILE OBRANCH HERE 00 ,

3 IMMEDIATE

ENGLISH EXPLANATION

Only two new words need to be
defined to use the CASE statement.
(CASE) is the execution version that
duplicates (OVER) the top of stack
value then compares (=) 1t to the
case value. If they are equal, the
true action through the IF statement is
taken and the stack value u 1s dropped
(DROP). As part of the true action
a flag (1) is pushed on the stack
for OBRANCH to test when CASE is
executed. If the stack and case values
are not equal the false action (ELSC)
is taken and a false flag (0) is
pushed on the stack over the original
stack value tested (u). Both actions
exit with THEN. CASE compiles the
address of (CASE) and the address of
the run-time IF called OBRANCH
A 16 bit zero is compiled (,) at
HERE in the dictionary, by HERE 00
, to reserve space for the branch to
EISE or THEN. The precedence bit of
CASE is set so that CASE compiles 6
bytes whenever it 1is executed. Like
IF, CASE must be used inside a colon
definition and each use of CASE
requires a corresponding THEN (or
ELSE) to complete the structure.

GLOSSARY ENTRIES
(CASE)

The run-time procedure that is used
by CASE, Equivalent to OVER = IF DROP.
(CASE) is campiled by CASE.

CASE u ul -—-- u P,C2+

u ul CASE true action for u=ul
ELSE u false action THEN

If u=ul, drop u and ul and execute true
action following CASE until next ELSE
or THEN. If u is not equal to ul, drop
ul but leave u and execute false action
following ELSE or drop ul but leave u
if no ELSE and exit to THEN.

FORTH DIMENSIONS II/3

Page 82

u ul CASE true action for usyl ELSE

@ ul CASE true action for usul ELSE
u un CASE true action for u=un ELSE
u false action THEN THEN...THEN

EXAMPLES
See screens #199 and #200.

SCR #199 1is used to demonstrate
simple CASE use in the same application
of the example published in FORTH-
DIMENSIONS v 1/5, p. 51 to show
conformity to an existing structure.

SCR #200 is a simple, but elegant
example of CASE use in a video editor
which occupies about 355 bytes of
dictionary space for the COMPLETE
editor. This is a good example of the
CASE structure in fig-FORTH used to
save ocode space and provide clarity of
structure. While the editor is written
for the ADM-3A terminal, line 1 defines
a word which controls the cursor
position sequence, so that any terminal
can be used by making appropriate
changes to the word YXCUR . The
integer values in line 2 (2 ad 4),
determine the initial Y,X offset of the
cursor in the HOME position (upper
left corner + Y,X offset). This
allows for adjustment of different LIST
formats and edit screen positions. The
vertical line at the right margin of
the screens is generated by a 7C EMIT
campiled in LIST. This vertical line
gives the video editor user a positive
indication of the editor limits of the
right margin by setting up a window
in which to edit. The ESC ($1B) key
is used to exit the video editor VEDIT
when finished. In fig-FORTH, use
EMIT in place of ECHO in line 1.
pon't forget to FLUSH .

DISCUSSION

This implementation of CASE in this
form is fig-FORTH transportable to
different machines {(ie., 6502, 8080,
6800 etc.), however there is a 6 byte
requirement for each use of CASE versus
only 4 bytes for each use of IF. 1In

Copyright 1977, RCS Associates

oK

{

FORTH DEFINITIONS BASE @ HEX

{

applications like the example shown
in SCR #200, the 2 byte overhead in
CASE (6 bytes vs. 4 bytes for IF)
saves 4 bytes for each use in lieu of
OVER = IF DROP { 10 bytes). More
importantly, 1its use significantly
enhances the readability and structure
of the source code at the minimum cost
of only 2 new FORTH words.

SCRe 198

CASE DEFINITION RAS~09FEBBO)

FORGET TASK TASK

(CASE) OVER = IF DROP] ELSE O THEN ; (EXECUTION CODE)

: CASE (CASE) OBRANCE HERE 0 C, IMMEDIATE
BASE !
SCR¢ 199
TEST ° CASE * STRUCTURE) BASE @ 8EX
MONITOR
41 CASE .° ASSIGN * ELSE
44 CASE .* DISPLAY * ELSE
46 CASE .° pILL ° ELSE
47 CASE .* GO * ELSE
49 CASE .“ INSERT * ELSE
53 CASE * SUBSTITUTE * ELSE

THEN Tﬂtl; THEN THEN THEN THEN

: KEYBGARD BEGIN KEY 7P AND DUP MONITOR 20 = END

BASE | 38

(

: YXCUR
: .CUR CUR @ 40

H

: IBLK SCR @ 8 ® CUR @ 80 /MOD ROT + BLOCK + C!

SCRY 200

00 VARIABLE CUR
(ADM-3A)

VIDEC EDITCR, COPYRIGHT RCS 1978 } REX
18 ECHO 30 ECHO 20 + ECHO 20 + ECHO ;
/ROD 2 + SWAP 4 + SWAP YXCUR : : ICUR 0 MAX
IFF RIN CUR | ; 3 +CUR CUR & + ICUR ; : +.COR +CUR .CUR ;
+LIN CUR @ 40 / (LINE §) + 40 ® (CUR ; : HOM 00 CUR !
UPDATE 1 +.CUR ;

: VEDIT LIST CR CR CR CR CR HOM .CUR BEGIN

KEY 18 CASE 0 12 YXCUR QUIT ELSE (ESCAPE)
0B CASE -1 +.CUR ELSE (LEFT CURSOR}
QA CASE 40 +.CUR ELSE (DOWN CURSOR)
0B CASt -40 +.CUR ELSE (UP CURSOR)
0C Cast 1 +«.COR ELSE (RIGHT CURSOR)
0D CAST 1 +LIN .CUR ELSE (NEW LINE)
12 CASE BOM .CUR ELSE ({ BCMNE CURSOR)

DUP ECHO (BLK

THEN THEN THEN THEN DECIMAL :5

THEN THEN THEN AGAIN :

Major Robert A. Selzer
APO San Francisco, 96301

Judges' Comments - This entry has the
unfortunate need for closing the CASE
by a correct number of THENs. It is
written for microFORTH. The example of
a screen text editor is outstanding and
should be carefully read by all.

Page 83

FORTH DIMENSIONS 11/3

PORTH-65 Ves

TN M W

o

e WMPAUI MW

—=—A CASE STATEMENT ——

Kenneth A. Wilson

CASE STATEMENT CONTEST

1.0 Description of the entry (coded in
microFORTH)

1.1

1.2

1.3

Screen 338 defines the 4 words
needed to generate a complete
CASE statement.

Screen 339 contains a CASE test
example.

The next 2 pages contain the
printout obtained by executing
the word TRIAL.

2.0 Definition of CASE words

2.1

2.2

2.3

stack

word vocabulary block in out

<CASE FORTH 338 1 0

A defining word which creates a
named array of n + 1 cells.
Example: n <CASE name.

-> FORTH 338 0o 1

A redefinition of for visual
clarity. Pushes onto the stack
the address of the parameter
field of the word that follows
in the current input stream.

=CASE FORTH 338 3 0

Puts the address of a word (Sl)
into an array (S0) at cell n
(s2).

Example: n word array =CASE
Read as: "n" becomes "word" in
"array” case.

2.4 CASE FORTH 338 2 0

Executes the word whose address
is contained in the array (S0)
at cell location n (S1).

Example: n name CASE

3.0 Explanation of the Example in
Screen 339.

3.1 Line 1 defines 3 Cases:

1 FIRST is a Case of 4 cells
.2 SEC is a Case of 4 cells
.3 THIRD is a Case of 4 cells

3.2 Lines 2 thru 5 define "print-
ing" words as follows:

1 Pronouns: I, YOU, WE, THEY
2 Verbs: RN, WAL, SIT, JOG
3 Adverbs: HOME, BACK, DOWN
UpP

'3. 20
3. 2.
3 2.

3.3 Line 6 thru 9 define the
contents of the three Cases as
follows:

3.3.1 FIRST Case contains 4
Pronouns

3.3.2 SEC Case contains 4
Verbs

3.3.3 THIRD Case contains 4
Adverbs

3.4 Lines 10 thru 14 define the
word TRIAL which when executed,
will cause the three Cases to
be executed in sequence for
each different possible com-
bination of the index. i.e.:

111 FIRST CASE SEC CASE THIRD CASE
112 FIRST CASE SEC CASE THIRD CASE

554 FIRST CASE SEC CASE THIRD CASE
555 FIRST CASE SEC CASE THIRD CASE

FORTH DIMENSIONS II/3

Page 84

An Overview TRIAL

Cell number O 1 1 n

I RUN HOME
MAME I RUN BACK
I RUN DOWN
Reserved for I RUN UP
WORD1 YO RUN HOME
WORD2 YOU R{UKN BACK
YOU RUN DOWN
WORDR YO RUN UP
Figure 1 WE RUN HOME
A Case Arcay NAME of n+l Cells WE RUN BALK
WE RUN DOWN
WE RUN UP
THEY RUN HOME
Cell number 0 1 2 n THEY kUN BACK
NAME THEY RUN DOWN
THEY RUN UP
I WALK HOME
I WALK BACK
NAME 2 2° + (points to) ¢ EXECUTE (executes WORD.) I WALK DOWN
I WALK UP
figure 2

YOU WALK HOME
YOU WALK BACK
YOU WALK DOWN
YOU WALK UP

Storing and Executing Cell 2

338 LIST WE WALK HOME

0 (CAST TEST WORDS) WE WALK BACK

2 Tiease O VARIABLE 20 o1 4 WE WALK DOWN

©) oAsE ROT 20 e 1 WE WALK UP

: 1 CASE SWAP 2* + @ EXECUTE

z THEY WALK HOME
1: THEY WALK BACK
E THEY WALK DOWN
13 THEY WALK UP

i; DECINAL ;S KAW 2-18-80
* I SIT HOME
139 LIST I SIT BACK

0 (CASE TEST EXAMPLE) DISPLAY DEFINITIONS DECINAL I SIT DOWN

1 4 (CASE PIRST 4 <CASE SEC 4 <CASZ THIRD

2 :II [T) :YOU {YOU] ; :ME {WE] ; : THEY (THEY] ; I SIT (P

3 s MUN [ROW | ; :t WALK [WALK] ; : SIT (SIT] 3

A T el

f 1T I e, e e YOU SIT BACK

-> IRST = -> WAL -

§ 3> We rInst = CASE 3 - SIT SEC =<CASE 3 -> DOWN THIRD <CASE YOU SIT BACK

3 45 THEY PIRsT OhsE ¢ o> JOG SEC =CASE 4 -> UP THIRD =CASE YOU SIT DOWN

1n 51001 YOU SIT UP

12 S 1 DO OVER OVER I ROT ROT

13 PIRET CASE SEC CASE THIRD CASE CR

14 LOOP DROP CR LOOP DROP CR LOOP ;
o:s DEC IMAL i8 AN 2-28-30

Page 85 FORTH DIMENSIONS II/3

WE SIT HOME
WE SIT BACK
WE SIT DOWN
WE SIT UP

THEY SIT HOME
THEY SIT BACK
THEY SIT DOWN
THEY SIT UP

YOU JOG HOME
YOU JOG BACK
YOU JOG DOWN
YOU JOG UP

WE JOG HOME
WE JOG BACK
WE JOG DOWN
WE JOG UP

THEY JOG HQME
THEY JOG BACK
THEY JOG DOWN
THEY JOG UP

CK

Kenneth Wilson
Waltham, MA 02154

Judges' Comments - This is a very
simple positional (jump table) type of
CASE. The whole thing can be defined
in three short lines of code. At first
glance, however, the presentation looks
more difficult than it is. Part of the
problem is that the notation - the word
names - does not suggest, very well,
what is going on. This entry looks
like a good complement to Eaker's.
Both are simple mechanisms for doing a
single job and the jobs that they each
do are very different. Work is needed
on integration and further development
of these models.

NEW PRODUCT
68000

CREATIVE SOLUTIONS, INC. announces
the availability of the FORTH
programming approach for the Motorola
68000 16-bit Microprocessor.

Featuring: FORTH Interest Group
Model and FORTH-79 Standard
Compatibility, Virtual Disk Operating
System, Text Editor, Inline Macro
Assembler, Computer Aided Instruction
Course on the FORTH Proramming Approach.

Also Available: Customized 1/0
Drivers for Non-Standard configurations,
Suitable Hardware Configurations,
Complete Source (written in FORTH), Meta
Compiler, Multi-tasker, Extended Data
Base Management and File System.

The standard software product,
available for configurations utilizing
the Motorola MEX68KDM (D2) 68000
evaluation model with Persci 1070
controller and compatible floppy disk
drives retails for between $1500 - $5000
(depending upon options) for single user
systems.

For further information please
contact Creative Solutions, Inc., 14625
Tynewick Terrace, Silver Spring,
Maryland 20906, Phone: (301) 598-5805.

NEW PRODUCT

AVAILABLE FROM ANCON

The following manuals and other infor-
mation is available from ANCON, 17370
Hawkins Lane, Morgan Hill, CA 95037.
Write for detailed list.
FORTH Systems Reference Manual
The FORTH Language
FORTH-11 Reference Manual
Indirect Threaded Code Reprints
FORTH, a Programmers Guide
PDP-11 FORTH Users Guide
PH21-MX FORTH Manual
CYBOS Programmers Manual
Program FORTH, A Primer
The JKL FORTH Manual

FORTH DIMENSIONS II/3

Page 86

==—=CASE STATEMENT

4

BUAVEWN O

2 CODE I! Y' PULO

WAYNE WITT/BILL BUSLER

Overview

The CASE word provides the capa-
bility to vector to a particular word
based on an input parameter, similar to
the FORTRAN computed go~to. The CASE
word also provides automatic limit
checking on the input parameter with an
optional out-of-range capability
(OTHERCASE) .

49

{ NEW CASE -~ CODE CASE WW & WB 2/13/80) HEX

NEXT (IP = TOP OF STACK)
s (CASE)
1 & 7rPr AND OVER SWAP <<

IF 2* 1 ¢ 2+ @ 2+ EXECUTE
ELSE DROP I @ O< (TRUE 1F OTHERCASE SPECIFIED

IP £ @ 7rPPP AND 2° I + 2+ @ 2+ EXECUTE (OTHERCASE
THEN THEN { MOW TO CONTINUE EXEC. AT DONE
I DUP € DUP 0«¢ (" GET ADDR. AND VALUE OF CASE-INDEX
1P 7FFP AND 1+ THEN (INCR INDEX IF OTHERCASE SPECIFIED
2* 2+ + R> DROP ! ; { CONTINUE EXECUTION AFTER DONE

(CODE CASE -~ CASE PARAMETER N -l
{ TRUE IF N IN LIST RANGE
{ EXEC. LIST MODULE N

(NOTE: INTERPRETER POINTER NOVED TO END OF LIST OR)
{ AFTER TBE DONE) DECIMAL S

S0

(NEW CASE - OTHERCASE - DONE Wi o WB 2/15/80) HEX
(PUT CODE CASE ADDRESS IN DICTIONARY ,

(PUT B ON STACK ,

1 CASE (CASE) BERE O , ;7 IMMEDIATE (CREATE CASE-INDEX
(1K DICTIOMARY AND ZERO IT

: OTHERCASE DUP $000 SWAP | ; IMMEDIATE (SET OTHERCASE BIT
(IN CASE-INDEX

: DONE DUP BERZ SWAP - 2 /1 - { CALC. CNT FOR CASE-INDEX

SWAP DUP @ (GET THE CASE-INDEX TO TEST POR OTHERCASE
ROT DUP 0= (TRUE IF MO ITEMS IN LIST
IF DROP DROP 0 (SET CASE-INDEX TO ZIERO
ELSE Swap { TRUE IF OTBERCASE SPECIZIED
Ir 1 - 8000 OR THEN (= «1 AND OTHERCASE BIT SET
TBEN SWAP | ; IMMEDIATE DECIMAL :S (STORE CASE-INDEX

This listing is from a 6809 version of FORTH.

R T

CASE

n CASE mO ml ... mi DONE

CASE 1is used as a structured con-
struction where n = 0 to 1 and mO
ml ... mi represent a list of word
names with the list being terminated

by the word DONE.

When the definition containing the
case construction 1s executed,
module mn will execute, then execu-
tion will continue after the DONE.
If n is not in the range O to i,
execution continues after the
DONE.

Alternative CASE usage with OTHERCASE

n CASE ®C @)l ... =i OTHERCASE mnx DONE

When the definition containing the
case construction is executed,
module mn will execute if n is in
the range O to i; then execution
will continue after the DONE. If n
is not in the range O to i, module
mx will execute and then execution
will continue after the DONE.

Only executable modules should be
used in the case list; literals and
compiler words, especially:

CASE OF ELSE THEN BEGIN END BUILDS DOES
Should NOT be used.

OTHERCASE
Used in conjunction with CASE word
for out of range conditions. See
CASE usage.

DONE

CASE word terminator. See CASE

usage.

Replaces the interpreter pointer
with the top stack item (n). '

Page 87

FORTH DIMENSIONS I1/3

The execution time portion of the
CASE word.

<<
nln2 — f

Unsigned 16 bit less than.

Example of CASE usage

1 TXX CASE TX1 TX2 TX3 DONE ;

If TXX is executed, then execution will
continue as follows based on the value
on the stack.
STACK VALUE EXECUTE
0 TX1
1 TX2
2 TX3
Execution then continues after the
DONE. If the stack value was not 0, 1

or 2 then execution continues after
the DONE.

Examples of CASE usage with OTHERCASE.

¢ MA@ TE1l CASE ENQ VOICE SYNC NULL OTHERCASE €£M3) OONE

1 Ml CASE NULL FIfO TIME XMIT-MSG OTHERCASE MH2 DONE CLEANUP ;

If MH]1 is executed, then execution will
continue as follows based on the value
on the stack.

STACK VALUE EXECUTE

0 NULL

1 FIFO

2 TIME

3 XMIT-MSG
Any Other Value MH2

Execution then continues after the
DONE, in this instance CLEANUP.

MH2 illustrates the nesting capability
of the CASE word.

This form of CASE conforms with the
unwritten rule of FORTH to keep it
simple and basic. The user needs to
remember only three words, CASE,
OTHERCASE and DONE to construct simple
to complex forms of the structured
CASE. The CASE in providing automatic
limit checking and out of range
recovery elliminates the need for user
limit testing of the parameters. This
out of range checking capability does
slow the execution speed slightly, but
it was felt that the added capability
was worth the slight loss of speed.

Bill Busler
Odessa, Florida 33556

Wayne Witt
Tampa, Florida 33615

Judge's Camments - The run-time word
(CASE) seems much too long for the job
it does. ‘This is partly because the
out-of-range case is handled by a
special construction. Nevertheless,
the code could be reorganized or
factored. Also, pushing the DONE
address back on the return stack at the
end of (CASE) would eliminate the need
for 1! and make the package more
portable.

The @DO ... THEN construction in Kitt
Peak FORTH accomplishes all the same
functions much more efficiently.

COME TO FIG CONVENTION
NOVEMBER 29

FORTH DIMENSIONS II/3

Page 88

THE KITT PEAK
GODO CONSTRUCT

By David Kilbridqge

The GODO construct, as specified
in the glossary of the Kitt Peak FORTH
Primer, is a type of CASE statement.
An index on the stack is truncated to
fall within a contiguous range and used
to select a word from an in-line
execution vector. I present here a
very simple implementation in fig-
FORTH.

As an example of usage, here is a
word which accepts a 0 or 1 from the
terminal and selects the corresponding
disk drive, and rings the bell if any
other key is pressed.

GET-DRIVE ." DISK DRIVE? "
KEY 2F -
(ODO BELL DRO DR1 BELL THEN ;

The necessary source definitions
are

(GODO) 2*

0 MAX R @ 4 - MIN
R> DUP DUP & + >R
+ 2+ @ EXECUTE ;

: QDO
COMPILE (GODO)
HERE 0 , 2
IMMEDIATE

How it works: GODO compiles (GODO)
and leaves space for a branch offset to
be calculated by THEN. The address of
the cell and an error-checking flag are
left on the stack. At run time (GODO)
doubles the index on the stack and
truncates it both above and below so
that the reference executed will always
be chosen from the list provided. Then
(GODO) uses the branch offset to step
its return address over the reference
list and finally executes the selected
reference.

Glossary:
GODO -—— addr n (campile-time) pP,C
(GODO) n ~—~ {run-time)

Used in the sequence
.o« @ODO RO Rl ... Rn THEN ...

At run-time, QODO selects execution
based on a signed integer index. 1f
the 1index is <=0 then RO is executed;
1f =1 then Rl is executed; ... if >=n
then Rn 1s executed. After executing
the selected reference, execution
resumes after THEMN,

Discussion: The GODO construct
provides a basic contiguous-range type
of CASE statement requiring very little
supporting code. The compile-time word
is simple because most of the work is
done by THEN. The run-time word is
simple because truncating the index
allows out-of-range cases to be handled
just like in-range cases.

If other means are used to insure
that the index is always within range,
the "catch-all" references RO and/or Rn
can be omitted. However, there is
still the time overhead needed to
truncate the index (unless (GODO) 1is
recompiled without the second line of
its definition).

The principal limitation of this
construct is that only single words can
be referenced. This prevents direct
nesting of ®DO's. However, one can
nest by defining the inner QDO as a
separate word and referencing it in the
outer @DO. By letting Ro amd/or Rn be
such references, several noncontiguous
ranges can be covered.

Kitt Peak PRIMER available from FIG
for $20.00 in US and $25.00 Overseas.

COME TO FIG CONVENTION
NOVEMBER 29

Page 89

FORTH DIMENSIONS 11/3

FIG NORTHERN CALIFORNIA
MONTHLY MEETING REPORT

26 April 80

The FORML session consisted of three
cresentations covering FORTH File
croposals. John James and John Cassady
2:scussed Directories consisting of bit
—aps named FileControlBlock (FCB)
~nerein allocation of strings of blocks
files) were managed. Particulars of
zitmap manipulation at the Buffer,
3lock and Disk (file and volume) levels
~ere explicated. Some other oconcepts
:ncluded user transparency, hierarchy
cf directories, commands, security and
.ntegrity. Kim Harris described Record
vpes and management within a File and
zave examples of FORTH, Inc. styled I/0
2t the Field level. The pros and cons
zf the various approaches will be
Jebated at the next meeting where also
String manipulation will be discussed.
Attendees were requested to prepare
~rltten proposals of anticipated
requirements and arguments for and
zjainst the different approaches.
Though not a tutorial, the FORML
session was very instructive.

The April Northern California FIG
meeting oonsisted of a presentation by
Jim Brick (of M&B Design) of a poly-
TRTH bootup under CP/M. Jim described
tne application requirements that
croduced the need and the technique he
-sed to develop this bootup package
s0ld by FORTH, Inc. He demonstrated
the hybrid package on a TRS-80 with I/0
accessories which allowed 8" disks and
remapping of the TRS-80 memory for
20lyFORTH-CP/M compatability.

Bill Ragsdale initiated a tutorial
on overflow correction which spon-
zaneously escalated into a discussion
on error signals, repair and recovery.
¥im Harris, Lafarr Stuart and Dave
3oulton described their respective
approaches to dealing with errors.
2111 elaborated the "Utrecht approach"”

words can define error recovery and
the return stack can be usefully
unthreaded. He congratulated our Dutch
colleagues for their imaginative
applications of "tricks" garnished from
other computer languages.

Henry Laxen was congratulated for
his excellent article on FORTH in the
80 April 28 issue of INFOWORLD.

Kim Harris announced his FORTHcaming
ocourse on FORTH programming at Humbolt
State University (80 July 21-25) and
also reported on a talk he delivered
earlier this month at the Asilomar

1.E.E.E. conference on megatransistor
chips.

.. .HANDOUTS provided at the meeting
included:

-polyFORTH-CP/M (Brick)
-INFONORLD reprint (Laxen)

~TIC-TAC-TOE (in FORTH, of ocourse)
(George Flammer)

~overflow correction (Ragsdale)
-Match CPM for 8080 figFORTH (anon)
-Double number support (Ragsdale)

-String match for Editor (Peter
Midnight)

;S Jay Melvin

Publisher's Note:

Come on, you other FIGGERS, send in

=0 error signaling and recovery and reports on your meetings. We'll
wted two lessons learned: high level publish them.
FORTH DIMENSIONS I11/3 Page 90

FIG NORTHERN CALIFORNIA
MONTHLY MEETING REPORT

24 May 80
FORML Session -

Kim Harris directed a review of last
month's session to compare and contrast
file systems presented by:

1. John James
2. John Cassady
3. Kim Harris (FORTH, Inc. system)

The most striking difference between
the three file systems was that FORTH,
Inc.'s did not utilize a bit map in the
directory which would allow for a
distinction between physical and
logical files. The bit map implemented
in James' and Cassady's systems provide
for easier file manipulation.

FIG Meeting -

Bill Ragsdale opened the meeting by
introducing guests Ed Murray from the
University of South Africa and Don
Colburn who is marketing a FORTH
Teaching Tutorial to be configured for
various machines. '

The meeting was devoted to a two
fold tutorial where Kim Harris ex-
plained FORTH tools ranging from
NUMERIC output and base conversion to
test interpretation. I/0 formating
examples included the definition of
HOLD, ASCII and PAD. These "tools"
were applied in a temperature con-
version program. Bill Ragsdale
followed with a presentation on problem
solving techniques using the task of
printing Morse (dits/dahs) characters
to the screen in response to text
input. Top down techniques were
delineated by listing the subtasks and
writing code then testing each module.

John Draper described CAP'N Soft-
ware's Version 1.7 FORTH for the Apple;

the system was up and running for
demonstration. Ragsdale notified us
that Computer magazine wants articles
for a FORTH issue next year and that
Byte's August issue will have a Robert
Tinney cover displaying three blocks in
a field of stars, each block containing
a word (2%, DUP, +) and threaded
together by a ribbon terminating in a
space needle.

Handouts included: Kim's tool Kkit,
Bill's Morse Code worksheet (a blank
page!), John's Version 1.7 brochure,
and Benchmark by DRC for measuring
FORTH execution speeds on CRAY-1
through micros. Also, a floating point
package by NHC, a paper on file word
concepts by Jim Berkey and the HomeBrew
Computer Club's newsletter by (ed.)
Bill Reiling were available.

;s Jay Melvin

—---MELP WANTED ----

Full or Part Time
MICROCOMPUTER
R & D Technician
Jr. Engineer

To assist in the integration, trouble-
shooting and design of microcamputer
systems for scientific and industrial
applications.

Programming interest a plus.

FORTH, Inc.

Contact: Gary Kravetz
FORTH, Inc.
2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254
(213) 372-8493

Page 91

FORTH DIMENSIONS 11/3

FORTH Interest Group Meetings

Northern California

4th Saturday

Massachusetts
3rd Wednesday

San Diego
Thursdays

Seattle
various times

Potomac
various times

Texas
Various times

Arizona
Various times

Oregon
Various times

FIG Monthly Meeting,
1:00 p.m., at Liberty
House Department
Store, Hayward, CA.
FORML Workshop at
10:00 a.m.

MMSFORTH Users
Group, 7:00 p.m.,
Cochituate, MA. Call
Dick Miller at (617)
653-6136 for site.

FIG Meeting, 12:00
noon. Call Guy Kelly
at (714) 268-3100
x 4784 for site.

Contact Chuck Pliske
or Dwight Vandenburg
at (206) 542-8370.

Contact Paul van der
Eijk at (703) 354-
7443 or Joel Shprentz
at (703) 437-9218.

Contact Jeff Lewis at
(713) 729-3320 or
John Earls at (214)
661-2928 or Dwayne
Gustaus at (817)

387-6976. John
Hastings (512)
835-1918.

Contact Dick Wilson
at (602) 277-6611
x 3257.

Contact Ed Krammerer
at (503) 644-2688.

New York

vVarious times Contact Tom Jung at

(212) 746-4062.

Detroit
Various times Contact Dean Vieau at

(313) 493-5105.

Japan

Various times Contact Mr. Okada,
President, ASR Corp.
Int'l, 3-15-8,
Nishi-Shimbashi
Minato-ku, Tokyo,

Japan.
Publisher's Note:

Please send notes (and reports)
about your meetings.

----HELP WANTED -

BUSINESS SYSTEMS IN FORTH
We need two good FORTH programmers.

You should have solid FORTH experi-~
ence, a year or two, and be generally
competent in Computer Science.

We are building an exciting range
of business application systems using
FORTH - the advantages are obvious! -~
and our approach is unique. We'll have
a range of configurations - single and
multi-processor, both Winchester and
large fixed disks and color graphics
screens,

Ideally you'll live in Orange County
- be attracted by a small, quality team
- and like to grab your own projects
with a strong sense of self management
- we haven't got the time or the
inclination to be overbearing.

Please send brief description of
your background to: :

The Software Development Director
4861 McKay Circle
Anaheim, CA 92807

and let us know why you think you'd like
to work with us.

FORTH DIMENSIONS II/3

Page 92

CALL FOR PAPERS
FORML CONFERENCE

(FORTH Modification Laboratory)

Papers are reguested for a three day
technical workshop to be held November
26~-28, 1980 at the Asilomar Conference
Grounds in Pacific Grove, California
{(on the Monterey Peninsula). The
purpose of the workshop 1s to discuss
advanced technical topics related to
FORTH implementation, language and
application. Papers on any of the
following or related topics are
requested for presentation and dis-
cussion:

1. Programming methodology
problem analysis and design
implementation style
development team management
documentation
debugging

2. Virtual machine implementation
arithmetic
address enlargement
position independent object
code
metaFORTH

3. Concurrency
resource management
schedul ing
intertask communication
and control
integrity, privacy and
protection

4. Language and compiler
typing and generic operations
data and control structures
optimization
5. Applications
file systems
string handling
text editing
graphics

6. Standardization
Review and discussion of
79-STANDARD
Input for the Standards Team

FORML 1S an organization (sSponsoreq
by the FORTH Interest Group) which
promotes the ecxchange of ideas on
the use, modification and extension
of the FORTH approach to systems
development., This will be an advanced
technical workshop; no introductory
tutorials will be held.

Abstracts of papers must be received
by October 1, 1980 for inclusion in the
conference program. Complete papers
must be received by November 1, 1980
to be included in the conference
proceedings. Send both abstracts and
completed papers to:

FORML Conference

P. 0. Box 51351
Palo alto, CA 94303

----HELP WANTED----

TITLE: Product Support Programmer

DUTIES: Responsiple for maintaining
existing list of software products,
including the polyFORTH Operating
System and Programming Language, file
management options, math options and
utilities and their documentation,
and providing technical support to
customers of these products.

Pequirements for candidates:

1. Good familiarity with FORTH—preferably
through one complete target-compiled
application.

2. Good assembler level programming
skills.

3. Assembler level familiarity with the
8080 and PDP/LSI-11 processors and
preferably some of these: 8086, M680O,
CDP1802, NOVA, IBM Series I, TI99C.

4. Excellent communications skills--both
oral and written; ability to work weil
with customers.

5. Excellent organizational ability.
Elizabeth Rather

FORTH, Inc.

2309 Pacific Coast Hwy.
Hermosa Beach, CA 90254

(213) 372-8493

Contact:

Page 93

FORTH DIMENSIONS 71/3

FORML CONFERENCE

(FORTH Modification Laboratory)

November 26~28. 1980 at the Asilamar
Conference Grounds, Pacific Beach,
California. A three day advanced

technical workshop for the discussion

of topics related to FORTH implementa-
tion, language and application. No
introductory tutorials will be held.

FORML is an organization (sponsored
by the FORTH Interest Group) which
promotes the exchange of ideas on the
use, modification and extension of the
FORTH approach to systems development.

Asilomar is a comfortable, rustic
resort located on the Pacific Ocean
near Monterey in Northern California.
Attendees are urged to bring family
members to Asilomar as they will enjoy
the area and Thanksgiving dinner.
Costs are very reasonable, especially
for families, and include room (double
occupancy) and meals.

Attendees and/or
participants $100.00 (includes
conference registra-

tion and materials)

Non-conference
guest (wife
and/or husbard,

friend, and
children 12 or
over) $ 75.00

Children 11

or younger $ 50.00

Send request for registration and
list of guests by October 15th with a
check to:

FORML Conference
P.0. Box 51351
Palo Alto, CA 94303

NATIONAL CONVENTION

FORTH Interest Group

November 29, 1980 at the Villa
Hotel, San Mateo, California, 8:30 a.m.
- 4:30 p.m. for exhibits and papers;
6:00 p.m. cocktails; 7:30 p.m. for
dinner (with speaker). This one day
convention will include presentations,
workshops, hands-on equipment and a
number of vendor exhibits. An evening
dinner will include a talk by one of
the foremost authorities on FORTH (more
about the speaker in a later re-
lease).

Pre-registration for the convention
is available for $4.00.

Pre-registration for the dinner and
speech is required by October 15th at
$15.00.

Vendors may contact FIG about
the cost and availability of booth and
table space.

To pre-register or for more informa-
tion write:

FORTH Interest Group
P. O. Box 1105
San Carlos, CA 94070

Vendors may contact Roy Martens at
(415) 962-8653 for details about

exhibiting.

Room arrangements can also be
made through FIG.

kkkkkkkkkkk*FLASH LATE NEWS**%kkhkdk itk

FIG NATIONAL CONVENTION BANQUET SPEAKER

ALAN TAYLOR
Author of The Taylor Report for Computer
World. 30 years in computer field.

kkkkkkk*AMAKE YOUR RESERVATION**kkkkkikk

FORTH DIMENSIONS II/3

Page 94

FOSTH IMIEISID S

FORTH INTEREST GROUP

P.O.Box 1105
San Carlos, CA 94070

Volume ll
Number 4
Price $2.00

NSt

111,118,119

112

113

116

Historical Perspective

Publisher's Column

Balanced Tree

Letters

The Execution Variable and Array

Meetings

Project Benchmark

IPS — A German FORTH-Dialect

The CASE, SEL,
and COND Structures

FUSTH ITIESIDNS

Published by Forth Interest Group

Volume It No. 4 November/December 1980
Publisher Roy C. Martens

Editorial Review Board

Bill Ragsdale
Dave Boulton
Kim Harris

John James
Dave Kilbridge
George Maverick

FORTH DIMENSIONS solicits editorial material,
comments and letters. No responsibility is assumed for
accuracy of material submitted. ALL MATERIAL
PUBLISHED BY THE FORTH INTEREST GROUP IS IN
THE PUBLIC DOMAIN. Information in FORTH
DIMENSIONS may be reproduced with credit given to
the author and the Forth Interest Group.

Subscription to FORTH DIMENSIONS is free with
membership in the Forth Interest Group at $12.00 per
year ($15.00 overseas). For membership, change of
address and/or to submit material, the address is:

Forth Interest Group
P.O.Box 1105
San Carlos, CA 94070

HISTORICAL PERSPECTIVE

FORTH was created by Mr. Charies H. Moore in
1969 at the National Radio Astronomy Observatory,
Charlottesville, VA. It was created out of dissatisfaction
with available programming tools, especially for obser-
vatory automation.

Mr. Moore and several associates formed FORTH,
Inc. in 1973 for the purpose of licensing and support of
the FORTH Operating System and Programming Lan-
guage, and to supply application programming to meet
customers’ unique requirements.

The Forth Interest Group is centered in Northern
California, although our membership of 2,000 is world-
wide. it was formed in 1978 by FORTH programmers to
encourage use of the language by the interchange of
ideas through seminars and publications.

PUBLISHER’S COLUMN

We're deep into the planning and arrangements for
the FIG Convention and the FORML Conference. If you
haven't made your reservations, call right away, we
might be able to get you into the FORML Conference or
the Convention Banquet. Plan on coming to the Con-
vention anyway. Remember the dates and places zre:

FORML Conference, November 26, 27, & 28
Asilomar, CA

FIG Convention, November 29
Villa Hotel, San Mateo, CA

The other big news! FORTH-79 STANDARD is
available!!! Call (415) 962-8653 or send in your order,
today! $10.00!

Many publications are printing information about
FORTH. We don't get them all, so please send in copies
so we can thank the editors and add to our collection.

FIG had a booth at the Mini/Micro show and much
interest was generated among attendees which carried
over into a number of manufacturers that were exhibit-
ing.

Membership is fast approaching 2,000. We now
have members all over the world including the People's
Republic of China and Yugoslavia. See the listings of
meetings for information about how you can form a FIG
chapter. Just a few easy steps and you’ll have a time
and place to share information.

Look forward to seeing everyone at the FORML
Conference and the FIG Convention.

Roy Martens

Page 95

FORTH DIMENSIONS II/4

BALANCED TREE
DELETION IN FASL

Douglas H. Currie, Jr.
Nashua, NH

Abstract

FASL (Functional Automation
Systems Language) 1is a derivative of
FORTH containing significant modifi-
cations. This paper discusses one of
these, the FASL tree, an implementa-
tion of the AVL (height balanced)
tree. FASL trees are a data type of
the language, and are used in the
implementation of the dictionary. An
algorithm for deletion in FASL trees
is presented, as well as a FASL
program to implement the algorithm.

Key Words and Phrases

deletion, height-balanced trees,
binary trees, search trees, FORTH.

CR Categories

3.7, 4.10, 4.20, 4.34, 5.25, 5.31

Introduction to Height-Balanced Trees

The wuse of balanced trees has
become almost commonplace 1in data
base management, and is seeing limited
use in symbol tables. Many systems
would benefit from the use of balanced
trees, but their designers could not
afford the time to develop the algo-
rithms. A case in point 1is the
extensive use of hashing in “"high-
speed” microcomputer assemblers.
Hashing techniques have significantly
improved the performance of many
assemblers, but analysis of these
routines shows a best case perfor-
mance on the order of several milli-
seconds (due to the inefficlency of
division, or pseudo-random number
generation on microprocessors). FASL
trees, on the other hand, have a

guaranteed worst case performance of
far less than a millisecond even in
fairly large (over five hundred node)
trees.

In FUNCTIONAL* systems, FASL trees
are used in a line editor, data stor-
age directories, FACT (a truth table
compiler), message routing tables,
microcomputer assemblers, as well as
the FASL dictionary. A general pur-
pose microassembler uses a balanced
tree (fields) of balanced trees (con-
tents) to describe the target micro-
instruction. The wuse of multiple
trees allows identical keys in
different contexts (e.g., label names
and macro names).

The height-balanced tree was first
proposed by two Russian mathemati-
cians, G. M. Adel'son-Vel'skiy and E.
M. Landis in 1962 (hence AVL tree).
The idea is to maintain a binary tree
so that the height of the subtrees at
any node differ by at most one. The
technique incurs a penalty of only
two extra bits per node (FASL uses an
8-bit byte), and makes it possible to
search for, insert, or delete a node
with a worst case of 0(log N) opera-
tions (where N 1is the number of
nodes) .

Introduction to FASL Trees

Algorithms for search and inser-
tion in AVL trees are presented by
Knuth (The Art of Computer Program-—
ming, Vol. 3, Section 6.2.3); these
two algorithms were implemented in
machine code and (along with Indirect
Threaded Code) became the basis for
FASL. The deletion algorithm was not
implemented at this time for two
primary reasons: Knuth didn't give
it, FASL didn't "need” it. Deletions
occur much more rarely than inser-
tions or searches; FASL 1lived for
over a year with no delete operation.

*Functional Automation Gould Inc.
3 Graham Drive
Nashua, NH 03060

FORTH DIMENSIONS II/4

Page 96

For example, when a file was deleted
from a FASL directory, the entire
directory was reconstructed without
the "deleted” node. The time penalty
incurred was not significant because
directories are small (for FASL
trees), and had to be copied anyway
to be sent to the disk. (FASL lives
in a message enviroment. The disk is
in another Cyblok*).

After an overview of FASL trees
and their use, the remainder of this
paper will deal with the development
of a FASL tree deletion program in
FASL. For an introduction to binary
search trees, see Knuth (The Art of
Computer Programming, Vol. 3).

FASL trees are composed of a number
of sixteen byte nodes (see Figure 1).
The tree 1is identified with the
address of its head node. From the
head node we may find the root node,
and thus the entire tree. The head
node contains a pointer to its root
node, a pointer to its available nodes
list, and an integer which 1is the
tree's height.

All nodes other than the head node
contain an eight byte key, a left
link, a right link, a one byte balance
factor, and three uncommitted bytes.
The key is used to access the node.
Given a key, the search routine
compares it to the key at the root
node. If it 1is less, the search
continues with the node identified
(pointed to) by the left link. If it
is greater, the search continues with
the node identified by the right link.
The search terminates when it matches
the key (success), or reaches a null
link (failure). The null 1link 1is
represented by zero. The balance
factor is the height of the right
subtree minus the height of the left
subtree. The insertion routine always
leaves the tree balanced, i.e., the

*Cyblok 1is a registered trademark of
Functional Automation/Gould Inc.

balance factor 1is always minus one,
zero, or plus one.

SAMPLE TREE

|
AEAD 2007 ;
3y

fr———— Lo
FAEE -] a I ¢ 3
NODES L A v X -
LisT ° ' Fea 3]
r

nl
LI

NS
LL

FIGURE 1

The insertion routine obtains new
nodes from the free nodes list. This
list is simply a number of nodes
linked with their right 1links. A
null right link indicates the end of
the free nodes list. When the inser-
tion routine needs a free node, it
obtains 1{its address from the free
nodes list pointer in the head node,
and replaces it with the right 1link
of that node. If the free nodes list
pointer 1is null, then the tree |is
full.

The technique used by the insertion
routine to maintain tree balance is
essentially the same as for deletion.
Basically, four cases arise in inser-
tion when the tree must be rebalanced:
single or double rotation, left or
right. The discussion is postponed
until the section on deletion.

Page 97

FORTH DIMENSIONS I1/4

ves s e w T

To get a feeling for the efficiency
of FASL trees, consider a dictionary
of five hundred nodes. If this dic-
tionary was stored as a linked list,
a worst case access time of five hun-
dred compares would be incurred, with
an average access time of two hundred
fifty compares. Stored as a FASL
tree, this dictionary has a worst case
access time of nine compares, an
average of eight. The numbers become
even more convincing as the dictionary
grows in size.

FASL Tree Operations

FASL provides operations for cre-
ating trees, inserting and searching
for nodes, and accessing the uncom-
mitted data in a node. For example,
the FASL text

100 TREE SYMBOLS

creates a tree named SYMBOLS with two
hundred fifty-six available nodes (the
radix is hexadecimal). Assuming there
is a string of text in an area named
PAD which is to be used as a key to
access the tree,

PAD SYMBOLS LEAF

inserts a node in the tree SYMBOLS
with this key. LEAF leaves a boolean
flag on the stack to indicate success
or failure, and if successful leaves
the address of the new node on the
stack under the boolean.

Usually, new nodes are initialized
with some data. The following FASL
text will insert a node with the key
in PAD (as above), and initialize its
uncommitted bytes with constants:

12 3456 PAD SYMBOLS LEAF
IF F#!
ELSE DROP2 FI

Later, the data may be retrieved
onto the stack as follows:

PAD SYMBOLS FIND
IF Fi@
ELSE FAIL FAIL FI

I1f the string in PAD is the same as
was used in the preceding example to
insert the node, then the data re-
trieved will be 12 3456. 1If another
string 1s in PAD, then the data
retrieved will be 00 0000, unless a
node has been inserted with this
string as a key, in which case the
data associated with this node will
be retrieved.

From the example, it should be
clear how to use the FASL trees for a
symbol table for an assembler. Text
is read to PAD until a delimiter, and
then inserted in the tree. In the
case of labels, the node would be
initialized with the current pseudoPC,
and a flag byte to indicate “label.”
If the inserted text was a macro name,
the node might be initialized with a
pointer to the macro text and a flag
byte to indicate "macro.” Alterna-
tively, separate trees may be created
s> that identical keys may be used as
macro and label names. Later, when a
label or macro 1is wused, it may be
looked up in the tree to find its
corresponding values.

The TREE operation allocates space
for the tree in the FASL Global Area
(where code for colon-words is
placed). Another operation, TREEINIT,
is provided to initialize trees in
space that the FASL user has allocated
(e.g., in FUNCTIONAL Cybloks there 1is
a minimum of 256K bytes of "Public
Memory” which 1is accessed through
"Windows,"” and is not part of the FASL
Global Area). The TREEINIT operation
is often used in the Local Area (space
allocated on the Return Stack) or in
Public Memory.

FORTH DIMENSIONS IL/4

Page 98

The Deletion Algorithm for FASL Trees

A deletion algorithm for binary
trees, and the steps required to adapt
this algorithm to balanced trees are
provided by Knuth (The Art of Computer
Programming, Vol. 3, Sections 6.2.2
and 6.2.3). The details of the bal-
anced tree deletion algorithm are
presented here, but first a review of
binary tree deletion.

Deleting a node from a binary tree

may be decomposed into four cases
(see Figure 2). Call this node "X".
In the first two cases one of the

links of X is null, the other link is
a "don't care” (i.e., a pointer or
null). In both cases the other link
simply replaces the link pointing to
X. In case three the right son of X
has a null left link. 1In this case
the left link of X replaces the left
link of its right son, and the right
link of X replaces the link pointing
to X. In case four the symmetric
successor of X must be found. This 1s
done by following left links starting
with the right son of X until a null
link is encountered. The 1left 1link
of the father of the symmetric suc-
cessor is replaced by the right link
of the symmetric successor. The left
and right 1links of the symmetric
successor are replaced by the respec-
tive links of X, and the 1link which
points to X is replaced by a pointer
to the symmetric successor.

In all cases the essential left-
to-right order of the nodes is pre-
served. The deleted node is inserted
in the free nodes list, and the algo-
rithm terminates.

All that is required (!) to adapt
this algorithm to balanced trees is
to insure that the balance 1is main-
tained after the deletion. An impor-
tant observation is that the effect
of deletion on the binary tree is to
reduce the length of a single path
through the tree by one.

This path begins at the head, and
ends in cases one and two with the
node which re- placed X (i.e., the
node which is pointed to by the link
which used to point to X). 1In cases
three and four the path ends with the
node which used to be the right son
of the symmetric successor of X.
(Note that the ending node may actu-
ally be null.)

TREE DELETE

fIGURE 2
ol ————

NEW. —eee

CASE 111

[
| CASE 1 iase 1y

DON " Y DON'™ pes
caRE [I CARE

;
|
x !
l

CASE v

The path may be represented as a
list of pairs

(N.O , £.0) (N.1 , f£.1)
eer (Noi, f.1)

where each N.j is a node address, and
each f.j is a direction (-1 left, +1
right). N.O is the head node, £f.0 is
the +1 (since the "right 1link™ of the
head node points to the root). The
pair (N.i , f.1) is the end node minus
one, and identifies the end node of
the path (which, again, may be null).
Rebalancing may be required at each
node in the path, starting with node
(N.i , f.i), working backwards. This
is in contrast to insertion where re-
balancing is required for, at most,
one node.

Page 99

FORTH DIMENSIONS II/4

Adapting the deletion algorithm
for binary trees to balanced trees
requires that as the tree is searched
for the node to be deleted (and for
its svmmetric successor in cases three
and four), a list of pairs describing
the path is created. Once the node
is deleted, nodes are rebalanced back
along the path until a termination
condition is reached. .

The path 1is constructed on an
auxiliary stack. The operations
"Push(x,y)" to push a pair, "Pop(x,y)”
to pop a pair, and "Top(x,y)" to read
the top pair without popping are used,
as well as the capability of saving
and restoring the path stack pointer.

Using the notation "Link(-1 , M)"
for left link of node M, "Link(l , M)"
for right link of node M, "Bal(M)"
for the balance factor of node M, and
"Key(M)" for the key of node M, the
following is a detailed algorithm for
deleting the node with key K in a
balanced tree.

(1) 1Initialize 1local path stack.
Push(HEAD , +1).
Set X to Link(+l , HEAD).

(2) 1If K is less than Key(X), go to
(3) moving left.
If K is greater than Key(X), go
to (4) moving right.
Otherwise go to (5), key is
found.

(3) If Link(-1 , X) is 0, go to
(11), key is not in tree.
Otherwise Push (X , -1), set X
to Link(-1 , X), and go to (2),
keep searching.

(4) 1If Link(l , X) 1is 0, go to (1l1)
key is not in tree.
Otherwise Push(X , 1), set X to
Link(l1 , X), and go to (2), keep
searching.

(3

(6)

There are four cases:

(5a) Link(l , X) =0 ;

Top(N