
COOPERATIVE PROBLEM SOLVING

SCOTT H. CLEARWATER, TAD HOGG, and BERNARDO A. HUBERMAN

Xerox Palo Alto Research Center, Palo Alto, California 94304 USA

ABSTRACT

We present a quantitative assessment of the value of cooperation for solving con-
straint satisfaction problems through a series of experiments, as well as a general
theory of cooperative problem solving. These experiments, using both hierarchical and
non-hierarchical cooperation, clearly exhibit a universal improvement in performance
that results from cooperation. We also show both theoretically and experimentally the
super-linear speed-up that results from having a diverse collection of skills among the
cooperating agents. Our results suggest an alternative methodology to existing tech-
niques for solving constraint satisfaction problems in computer science and distributed
artificial intelligence.

1. Introduction

It is widely believed that a group of cooperating agents engaged in problem solving

can solve a task faster than either a single agent or the same group of agents working in

isolation from each other. As a matter of fact, that cooperation leads to improvements

in the performance of a group of individuals underlies the founding of the firm, the

existence of scientific and professional communities, and the establishing of committees

charged with solving particular problems. In the realm of computation, the emergence of

massively parallel machines underscores the assumed power of concurrency for solving

very complex tasks that can be decomposed into smaller pieces, and a large effort is

being devoted to the design of parallel algorithms for the solution of computationally hard

problems. This includes work by several authors who have pointed out the beneficial

effects of cooperation on hard problems by constructing models in which a few agents

communicate to accomplish a task1–4.

Nevertheless, little is known about the quantitative improvements that result from

cooperation. While a large body of knowledge has accumulated over the workings of

organizations, the evolution of cooperation in the biological world5, 6 and the design of

parallel computer programs7, little is known quantitatively about what ensues from having

a collection of agents working cooperatively on problem solving in general situations.

It is the purpose of this paper to elucidate under which conditions a collection of

agents should best be utilized in order to solve a computational problem fastest. In order

Computation: The Micro and the Macro View, B. A. Huberman, ed., World Scientific, pp. 33–70, 1992.

to do so we present a number of experimental results on cooperative problem solving

that both test theoretical predictions and provide a quantitative assessment of the value

of cooperation in problem solving8. These experiments were carried out by having a

number of computational agents solve a set of cryptarithmetic problems and measuring

their individual and global performance. These results provide a striking example of the

improvements in performance from cooperation and suggest an alternative methodology

to existing techniques for solving constraint satisfaction problems in computer science

and distributed artificial intelligence1. In these experiments we compare the time to first

solution for cooperative and non-cooperative agents. We also compare the scaling of

speed with the number of diverse strategies used by the agents

Many problem solving tasks can be viewed as searches in large problem spaces.

For realistic problems, where no algorithmic solution is known, heuristic methods

are used to prune the search. Recently, a theory that elucidates the performance of

cooperative processes searching through a large problem space was developed9. It showed

that cooperative searches, when sufficiently large, can display universal characteristics,

independent of the detailed nature of either the individual processes or the particular

problem being tackled. This universality manifests itself in two separate ways. First, the

existence of a sharp transition from exponential to polynomial time required to find the

solution as heuristic effectiveness is improved10. Second, the appearance of a lognormal

distribution in individual agent’s problem solving effectiveness. The enhanced tail of this

distribution guarantees the existence of some agents with superior performance. This can

bring about a combinatorial implosion11. In cases where the diversity of problem solving

skill increases as the number of agents increases, a super-linear speed-up is observed

Before discussing the results of this paper it is important to understand what is

meant by cooperation in problem solving. Cooperation involves a collection of agents

that interact by communicating information to each other while solving a problem. The

method of communication can be of any form, e.g., it may be through broadcasts or

through access to a centralized source of information. The agents may be loosely

aggregated as in a committee, or may be more formally organized as in a hierarchy.

The information exchanged between the agents may be incorrect, and should sometimes

alter the behavior of the agents receiving it. An example of cooperative problem solving

is the use of a genetic algorithm12 to solve a problem. In a genetic algorithm members

of a population exchange pieces of themselves or mutate to create a new population to

improve the overall performance of the entire population. Another example is a neural

network where the outputs of connected neurons affect the output of the neuron receiving

2

the outputs. An expert system using a knowledge base of facts with a number of processes

accessing andmodifyingthe knowledge base is also an example of cooperative problem

solving. If no modification to the knowledge base takes place then the processes do not

interact and there is no cooperation.

The next section introduces the search problem used in our experiments as well as

some underlying assumptions about the class of problems we are concerned with. Section

3 discusses various kinds of search methods. Section 4 gives the experimental results

and section 5 gives theoretical derivations for the various kinds of behaviors expected.

The paper concludes with a section where we discuss the implications of this work.

2. Constraint Satisfaction Problems

Constraint satisfaction problems lie at the heart of human and computer problem

solving13–15. These are problems in which values must be assigned to a set of variables

such that a number of conditions (the constraints) are satisfied in order for the assignment

to be a solution. In most cases of interest, no direct solution method is known and one

must resort to searching through a large number of possible assignments to find those

that satisfy all the constraints. Astate in the search is a set of assignments for all the

variables and apartial statehas only some of variables assigned. These search problems

can be characterized by the total number of states in the search space,T, and the number

of solutions,S. Let N be the number of agents or processes involved in the search. In a

fully parallel system, each of these can correspond to a separate processor, but they could

be simulated by a smaller number of processors as well. To be interesting the problems

should be intrinsically difficult so that a single agent can’t be expected to solve them in

a few steps. This requires that there are many states and that solutions be relatively rare,

i.e., T � S. Moreover, to have any motivation for considering cooperative problem

solving, there can’t be so many available agents that they could quickly examine all

search states independently, i.e., we should haveT � N . Since for typical constraint

problems the number of statesT grows exponentially with the size of the problem (e.g.,

the number of variables), these requirements are often satisfied in practice.

As a concrete constraint satisfaction problem for our experiments, we used the

familiar problem of solving cryptarithmetic codes. These problems require finding a

unique digit assignments to each of the letters of a word addition so that the numbers

represented by the words add up correctly. An example is the sum:DONALD + GERALD

= ROBERT, which one solution, given byA=4, B=3, D=5, E=9, G=1, L=8, N=6, O=2,

3

R=7, T=0. In general, if there aren letters and the sum uses baseb arithmetic then

there arebn possible states. However, not all of these correspond to the requirement that

letters represent distinct digits. The requirement of a unique digit for each letter means

that there are
�

b

n

�
ways to chooseb values andn! ways to assign them to the letters,

which reduces the total number of search states ton!
�
b

n

�
= b!=(b� n)!. Thus the above

example, which has 10 letters and uses base 10 arithmetic, has 10! states in its search

space. In all our experiments we used base 10 arithmetic.

Solving a cryptarithmetic problem involves performing a search. Although clever

heuristics can be used to solve the particular case of cryptarithmetic16, our purpose is

to address the general issue of cooperation in parallel search using cryptarithmetic as a

simple example. Thus we focus on simple search methods, without clever heuristics that

can lead to quick solutions by a single agent. This is precisely the situation faced with

more complex constraint problems where extremely effective heuristics are not available.

The speed at which an agent can solve the problem depends on the initial conditions

and the particular sequence of actions it chooses as it moves through a search space.

This sequence relies on the knowledge, or heuristics, that an agent has about which state

should be examined next. The better the agent is able to utilize the heuristics, the quicker

it will be able to solve the problem. When many agents work on the same problem, this

knowledge can includehintsfrom other agents suggesting where solutions are likely to be.

Our results show that the performance of agents collaborating in constraint satisfaction

problems is highly enhanced when compared to that of the same of group of agents with

no interactions.

More specifically, in our cooperative experiments agents wrote the hints they dis-

covered to a blackboard which could subsequently be read by others. This method for

agent interactions, described in section 3.5, differs from a case reported earlier in which

the hint blackboard was filled at the start and a search algorithm chose the hints from

the blackboard17. In that analysis, the hint blackboard consisted of orderings of rule

antecedents (hints) for use in a rule learning program employing a depth-first search

strategy.

Others have also studied multiagent solutions of cryptarithmetic, such as Kornfeld11

in his implementation of parallel heuristic search. His system employed some search

heuristics that estimated whether a particular agent would return useful information

in a short period of time. More resources were allocated to the agents that supplied

information with the least amount of resource use. His results showed an average

4

improvement over single agent performance (typically by a factor of three using a

concurrency of four which was found to be the best empirically). He also pointed out the

usefulness of diversity “to increase the likelihood of discovering assumptions that can be

made that will lead to valuable information quickly”. This work however, contained no

mathematical analysis of the process.

Blackboard systems have been widely used in parallel problem solving as in Rice

et al.2 who used the domain of aircraft tracking by passive radar to measure the per-

formance of parallel blackboard systems using rule-based expert systems. In Poligon,

their simulations included detailed implementations of control and communications. The

Poligon blackboard itself was also distributed. A rapid increase in the speed with the

number of processors was also found, but with an eventual leveling off due to various

overhead costs involved with communications and limits of serialization.

3. Search

The behavior of a collection of agents engaged in search to solve a problem is de-

termined by a number of characteristics. These include the overall performance measure

for the group, the search methods used by the individual agents and whether individual

efforts are combined (and if so how). In this section, we present several alternatives for

these characteristics, and illustrate them in the context of our cryptarithmetic example.

In particular, these include the ones used in our experiments and show how many kinds

of complex search methods can be studied in a simplified fashion with cryptarithmetic.

In many cases we found that the qualitative behavior is not strongly dependent on the

specific individual search strategy used.

An agent operates in a sequence of steps in which it picks a new state (possibly

incorporating hints) and tests whether it is a solution. If an agent finds a solution the

first time it examines a state, it solves the problem at step 1, and so on. Specifically, a

step consists of some event (e.g., pick and new state at random and evaluate it, or select

a hint and incorporate it) and how long it took to complete. Thus the general description

of a multiagent search is a sequence of events (specifying what was done, e.g., a hint

generated and which agent did it) as well as the time they occurred.

By viewing the search as a series of events, we get a description that applies

equally well to single or multiple agent searches. In the latter case, the distinction

between independent and cooperating agents is what prior events influence a given agent’s

behavior: an independent agent’s behavior is determined only by its own prior events,

5

while a cooperating agent’s behavior depends on that of others as well. As discussed

in section 5.5, this also allows collections in which agents choose to be independent or

to cooperate, which is relevant when there are dynamically changing costs as well as

benefits to cooperating.

3.1. Individual search

There are a number of search methods an individual agent can use to solve a problem.

We outline a few of them here including the ones we used in the experiments. Specifically,

we focus on relatively simple methods to allow us to investigate the improvement due

to cooperation even for unsophisticated agents, as well as to mimic the situation faced in

more complex search problems in which effective heuristics are not available.

There are two general kinds of individual search methods: deterministic and proba-

bilistic. Although our experiments all involved probabilistic search it is useful to highlight

the differences between the two approaches. In deterministic searches, the states are ex-

amined in some pre-specified order until a solution is found. In this case any heuristics

or extra knowledge gained from hints can be viewed as directly changing the number of

states remaining to be examined before the solution is found. Probabilistic searches, in

which states to examine are chosen at random, are more complicated. Instead of directly

changing the number of states to examine before a solution is found, extra knowledge

changes the probability that a solution will be found on each subsequent step.

The most straightforward search method, used in most of our experiments, is generate

and test. In this case, each step generates a complete state (i.e., assignments to all the

variables in the constraint problem) and tests whether it is a solution. This generation

can be done in a simple pre-specified order or new states can be generated randomly. In

random generation, states can be selected completely at random or the selection can be

restricted to only states that have not yet been examined. The latter case avoids some

unnecessary search and guarantees the search will terminate after all search states are

examined, but does introduce an additional requirement of storing previously examined

states and the cost of checking that they are not subsequently generated.

Other restrictions on the generation of new states are possible as well. For instance,

the assignments to all the letters can be replaced in one step (which we refer to as

“jumping” around the search space) or some assignments can remain unchanged, with

the extreme case being a change to only a single assignment (“walking”). Walking rather

than jumping through the space preserves the property that an agent near or far from

6

a solution is still fairly near or far after one step. Both the single letter-digit random

assignment and the complete new assignment method were used in our studies.

Another common search method is backtracking which involves partial states. With

this method, some ordering of the variables is selected (e.g., either fixed in advance or

chosen randomly) and partial states are constructed using this ordering until a full solution

is found or enough assignments are made to violate one of the constraints indicating that

there is no solution corresponding to this partial state. This method is useful for many

constraint problems, where these constraint violations occur well before all assignments

have been made and thus backtracking avoids a considerable amount of unnecessary

search. In our experiments, we use this depth-first backtracking search to compare the

benefit of cooperation on easy and hard search problems.

These basic methods can be improved with the use of heuristics to guide the selection

of states. An important class of heuristics uses information obtained in prior steps of the

search to suggest choices. Such a class of methods allows us to directly evaluate the

effect of cooperation. In a non-cooperative search, an agent using such a method could

only use information that it had previously found itself, while cooperative search allows

the agent to use information found by others as well.

3.2. Search in cryptarithmetic

The basic search paradigm we have used in the cryptarithmetic problem is random

generate and test with replacement. For example, when the agents jump through the

search space, at each step a set of possible letter-digit assignments is generated and

tested to see if any of them add correctly.

As an example of our search method consider two agents trying to solve the problem

AB+AC=DE. This problem has10!=5! = 30240 possible states and 144 solutions

(determined by exhaustive search). In the first time step, each agent selects a random set

of letter-digit assignments such that no digit is assigned to more than one letter. Suppose

the letter-digit assignments, or state, of the first agent are: A=4, B=2, C=7, D=3, E=9.

In this case the assignments do not correspond to a solution since 42+47 does not equal

39. However, the right most column, B+C=E (2+7=9), does add up correctly so that

the agent’s state ispartially (or locally) correct. Partial correctness includes cases where

a carry has been brought over from the previous column or may be sent to the next

column. Note that although a particular column may be locally correct, it may not lead

to a solution. Suppose the second agent’s state is A=3, B= 5, C=8, D=7, E=0. In this

7

case neither column adds up correctly. We will return to this example when discussing

how agents behave when in a non-cooperating or cooperating environment.

For a search method that uses previously generated information, in our cryptarithmetic

studies we used hints consisting of letter-digit assignments in columns that add correctly.

As described more fully in section 3.5, these hints were posted to a blackboard and were

then made available to one or more agents depending on the overall search method.

Agents used the available hints to select their next state. In a non-cooperative search, an

agent using this method could only use hints that it had previously found so that each

agent had a separate blackboard containing only the hints it had found. Cooperative

search allowed the agent to use hints found by others as well. When each agent

could communicate equally with the others (a “committee” organization) a single central

blackboard contained all the hints and was available to all the agents.

For an example of the effect of hints, in the case discussed above, the first agent

had one column correct (3 letters: B, C and E). If these letter assignments do lead to a

solution, or are treated that way by the agent, then there are only two letters that need to

be assigned from 7 possible choices. Thus the agent went from a search space of size

30240 to one of7!=5! = 42 states, a reduction by a factor of nearly 1000.

3.3. Relating search steps to time

So far we have presented the individual searches as a series of steps. To relate this

to actual time to complete the search, we must specify the time required to perform the

computation necessary for each step. For multiple agent searches, we must also relate

the step times of different agents.

The simplest case is to assume that the computational work required for each search

step is the same and that all agents are synchronized. This is especially appropriate for

simple search methods which don’t require evaluating complex heuristics and when all

agents share a single processor. This situation is described by uniform synchronous time

steps for all the agents.

Both of these conditions can fail to hold in more realistic cases. In a distributed

environment, there may be communication delays and slightly different clock speeds so

that the agents are not rigidly synchronized. On the other hand, the individual search

steps themselves may take different times, e.g., some search decisions may be fairly

simple to evaluate while others require extensive computation. Or processing hints from

8

other agents could require more computation than simply proceeding with the next step

of an individual search method. The most complex situation arises when the problem

to be addressed (e.g., robot navigation) involves constraints that change unpredictably

and asynchronously due to external events (e.g., changes in the physical world). In such

cases, the agents operate asynchronously and the time required for each step can vary.

While a detailed model of these different effects is possible, for simplicity in our

experiments we model both asynchronous agents and variation in the time to complete

individual steps by a simple Poisson process in which steps are completed at a given

average rate� (which we take to be one in all our experiments). In practice, for the

regime in which we are interested (i.e., the problem is sufficiently hard that agents, even

if they cooperate, are very unlikely to find a solution in just a few steps) this Poisson

process gives behavior qualitatively similar to that of uniform synchronized steps. For

much of our analysis processing hints was assumed to cost the same as simply generating

new states, which is reasonably valid for cases where the agents select hints randomly

off the blackboard.

3.4. Non-cooperative search

In addition to individual search methods, the behavior of a group of agents depends on

whether they share information. In non-cooperative search, the agents act independently.

In the simplest case, each agent examines the entire search space. However, this can

mean a single state is examined by more than one agent during the search. This can

be avoided by partitioning the search space into disjoint parts and assigning one to each

agent. In this partitioned search, agents only examine states in their assigned part of the

space thus avoiding unnecessary duplicate examination of the states. In our experiments

we used primarily the simplest non-cooperative case in which the search space was

not partitioned and used random generate and test with replacement, as described in

section 3.1. Restricting each agent to examine a state at most once, as well as partitioning

the search space so that a state is not examined by more than one agent, improve

performance somewhat, but far less than the enhancement due to cooperation.

Continuing with the cryptarithmetic example given in section 3.2 and supposing the

search space is not partitioned, since neither agent has solved the problem they continue

their search. This is done by selecting a new set of letter-digit assignments to replace the

previous state, even though partially correct information may be lost. This overwriting

serves the purpose of preventing agents from getting stuck in locally correct states. For

9

example, suppose the first agent randomly selects A=1, B= 3, C=2, D=9, E=4, which

is a “jump” since all letters are given random assignments in a single step. This state

has no columns that add up and represents a state that has fewer correct columns than

the previous state. On the other hand, if some assignments had been left unchanged

(“walking”), the partially correct information may have been preserved. The search

continues until one of the agents finds a solution.

Another means of non-cooperative search is to have the individual agents save and

subsequently use hints they have found themselves. In this case the agents are biased

toward states which are much more likely to lead to solutions than those obtained by

completely random selection.

3.5. Cooperative search

We now turn to the case of cooperation among the agents. In this case the

agents exchange information regarding partial results that may be helpful to others in

their subsequent search. We must specify how information is shared as well as the

organizational structure, i.e., which agents communicate with each other.

In most of our work we consider a simple organization in which each agent can

access the results of any other agent. In our experiments, all hints are written to a central

blackboard17 that can be accessed by all agents. There was no pre-specified limit to the

size of the blackboard except that provided by the constraints of the problem. Other

organizational structures are modeled by using separate blackboards to group the hints

into those accessible to different subsets of the agents.

For each search step, an agent asynchronously chooses a hint randomly from the

blackboard and replaces assignments in its current state with those specified by the hint.

If there are no hints, or the agent has already examined the state that would result by

using the hint (in the case where the agents have a memory of previously tried states), it

chooses a random letter–digit assignment in the non–partitioned non-cooperating strategy

described above. Once the agent obtains the new state it generates and posts all possible

hints from its state, if any. Thus, assignments that work for more than one column are

posted as several different hints. When random states are generated by jumping, rather

than single letter replacements, there is a greater possibility of generating more hints

faster but at the expense of frequently overwriting partially correct states.

10

Name: Agent 1
Step: 1
State: (A=4, B=2, C=7, D=3, E=9)
Addition check: 42
 +47

 39

Blackboard

(B=2, C=7, E=9)

Name: Agent 2
Step: 1
State: (A=3, B=5, C=8, D=7, E=0)
Addition check: 35
 +38

 70

Name: Agent 1
Step: 1
State: (A=4, B=2, C=7, D=3, E=9)
Addition check: 42
 +47

 39

Name: Agent 2
Step: 2
State: (A=3, B=2, C=7, D=8, E=9)
Addition check: 32
 +37

 89

Blackboard

(B=2, C=7, E=9)

Fig. 1. The simple cooperative cryptarithmetic example with two agents discussed in the text. In the left half of the
figure, Agent 1 has posted a hint of length 3, i.e., one containing assignments to three letters, to the blackboard. On
its next update, shown in the right half, Agent 2 uses the hint to update its state.

In the simple example discussed previously, the procedure for cooperating agents is

shown in Fig. 1. Hints for the cryptarithmetic problem were the letter-digit assignments

in columns that add correctly. Suppose the first agent evaluates its state before the second

agent. Since it has a column of letters that add correctly, this is posted to the blackboard

as a single hint. Thus, the blackboard now contains the hint B=2, C=7, E=9. Next, the

second agent randomly selects one of the hints (in this case there is no choice because

there is only one hint) and updates its current state with the hint contents, i.e., makes the

letter assignments specified by the hint. To maintain unique assignments for the digits, if

in the existing state a digit is also assigned to a letter appearing in the hint, then the hint

assignment supersedes the existing state assignment and the letter in the state that had

the duplicate digit is assigned an unused digit or interchanged with the duplicate. Thus,

the second agent’s initial state of A=3, B=5, C=8, D=7, E=0 becomes, after utilizing the

blackboard hint, A=3, B=2, C=7, D=8, E=9. Thus, the second agent still has not solved

the problem, and cooperation continues in this fashion until an answer is found.

Some cooperative situations involve agents with different kinds of abilities or search

strategies. Such diverse communities are particularly well-suited for the use of cooper-

ation since a particular agent may not be able to utilize all the information it generates,

whereas another agent, using a different strategy, can. This exchange of information can

improve performance beyond that possible without cooperation. To examine this situa-

tion we used a very simple way of introducing diversity for cryptarithmetic: specialize

the agents to only examine hints of certain lengths (i.e., containing assignments to only

a certain number of letters).

The effectiveness of these hints will generally depend on the search choices made

by the agents (e.g., as the search progresses, agents may find better partial solutions so

11

that hint quality increases over time; conversely, as agents get near the solution, hints

become less important since they will tend to duplicate partial solutions already found.)

The key difference between cooperating and non-cooperating agents is that hints

effectively reduce the size of the search space or increase the probability that a solution

will be found on a given step, for deterministic or probabilistic searches, respectively. In

the former case the cooperative search focuses the agents on much more plausible courses

of action. In the latter case, the agents have an enhanced probability of finding a solution

at a given step. With many agents solving a problem and starting at different locations in

the search space there is a chance that some of them will find hints worth communicating

to other agents, hints that can in turn be used to reduce subsequent search.

We also studied hierarchical organizations of cooperating agents to see how the benefit

of cooperation depends on the organizational structure. There are several motivations for

this. First, all large organizations work as hierarchies with restrictions on the communica-

tion of information. In addition, there are limits on the size of any group of collaborating

agents. Among these, we mention communication costs, finding relevant hints, and the

problems associated with sustaining collaboration when agents incur a cost for participat-

ing in cooperative problem solving. Communication costs become particularly important

when a large organization is involved. In particular, communication costs eventually

overwhelm a committee. Although computer communication bandwidths are ever in-

creasing and do exceed human bandwidths, there is a point where communication costs

become excessive for the performance desired, especially in distributed problem-solving

environments. In these situations it becomes advantageous to structure the organization

in the form a hierarchy. This restricts to some extent the allowed communications while

still permitting a flow of information. Specialization of tasks permits more efficient use

of hints between the appropriate groups of agents and gives another motivation for using

a hierarchy. This speeds up problem solving by allowing agents to work on sub-problems

without having to worry about solving the entire problem by themselves. Experimentally,

hierarchical organizations were created by giving each agent a separate blackboard and

specifying which other agents could access it based on the organizational structure.

3.6. Performance measures

Before turning to our experimental comparison of cooperating and non-cooperating

agents, we must specify how the performance of a group of agents is to be measured.

12

The appropriate performance measure depends on the nature of the problem, and our

simple cryptarithmetic problem can be used to provide examples of various measures.

In many cases, one is interested in finding a single solution to the problem and each

agent is individually capable of finding a complete solution. This means that the search

is completed as soon as one agent finds a solution. The appropriate overall performance

measure is then just the time required until some agent in the group finds a solution.

In other cases, several or all solutions to the problem are required so the group

performance is determined by when all the required solutions are found. Moreover,

the processing power devoted to those agents that finish early (i.e., before the required

number of solutions is found) may become available for the remaining agents.

When computational resources are limited and the problem is intrinsically very

difficult (e.g., the traveling salesman problem18) one must often be content with obtaining

only an approximate solution. In such satisficing search problems, the performance

measure is the quality of the best state found by the agents in a given time rather than

whether an optimal or exact solution state is found.

A more complex case arises when there are many related problems to solve. The

problems can be assigned to individual agents. When an agent completes its problem, it

is given another, or may be reassigned to an unrelated task and thus provide no additional

help to the other agents. An example is the processing of scanned images of many pages

of a single document in which each page could be assigned to an agent. Because these

pages are related, information gained from processing one page could potentially be

useful as a hint to other agents. An appropriate performance measure could then be how

many problems (e.g., pages) the group of agents solves in a given amount of time. This

is determined by the distribution of individual performance times for the agents rather

than just the speed of the fastest ones.

4. Experimental Results

In this section we present our experiments on the behavior of multiagent search for

cryptarithmetic. Although our simulations considered multiple agents, we could just as

easily have considered a single agent consisting of many parts. In fact, all the simulations

were done on a single processor running a single process. The important point is our

observations of theratio of the performance between a cooperative multiagent simulation

and a non-cooperative one should not depend on whether we use a single processor

13

or many. What is most important to the increase in performance is the diversity of

approaches available by having many agent processes.

4.1. Problem Solving by Committee

In this section we present results from many experiments involving a committee of

agents solving cryptarithmetic problems.

Super-linear Speed-ups and Diversity

Amdahl’s law19 predicts at most a linear speed-up in performance with the number

of processors. However, this places no restriction on its software equivalent: the speed-

up due to adding additional processes with diverse solution methods. One of the most

dramatic effects we have seen is a super-linear speed-up due to diverse cooperating agents.

While it is difficult predict what sort of diversity will lead to significant super-linearity

it is possible to test the prediction itself. Fig. 2 shows a super-linear speed-up as new

strategies are added to a collection of cooperating agents along with comparisons to two

groups of non-cooperating agents: those that use the same strategies of interpreting the

hints and those that use random generate and test with no hints.

2 3
Agents

0.0025

0.005

0.0075

0.01

0.0125

0.015

Speed

Fig. 2. Adding diversity leads to a super-linear speed-up in solution time. Average speed of the first finisher, defined
as the inverse of the average time required until some agent first finds a solution, for 200 runs as a function of the
number of agents employed trying to solveWOW+ HOT= TEA. Steps were related to time by a Poisson process with
average rate� = 1. The bottom linear line is for the case of non-cooperating agents, each using the same random
generate and test strategy with no memory of hints. The two non-linear curves correspond to the case where each
agent uses a different strategy for utilizing hints. The middle curve corresponds to the case where the agents were
non-cooperating, had their own blackboard and did not revisit states. The dark super–linear curve fits is the cooperating
case where the agents shared one blackboard and did not revisit states. Each error bar corresponds to the statistical
error of the mean of the measurement.

14

To illustrate the effect of diverse strategies on problem solving we chose to use

the length of the hint for types of diverse strategies, although others could have been

used. Three strategies were chosen, corresponding to a non-overlapping partition of hint

lengths. In particular, the first strategy used only hints that had length equal to 5. The

second strategy used hints of length 4. For a collection of agents using the two strategies,

half use the length 5 strategy and half use the length 4 strategy. The third strategy used

hints of length two or three. In a collection of agents using all three strategies, each

strategy would be used by one-third of the agents. The super-linearity comes from the

fact that agents with a given strategy can contribute hints that it cannot use to agents that

can utilize the hints by using a different strategy. This leads to a non-linear increase of

the number of hints available. The cooperating agents and the non-cooperating agents

with no blackboard or memory of previous states define a performance envelope that

corresponds to the extreme cases of performance that may be expected from a collection

of agents and strategies. To summarize, for cooperative diverse agents the diversity of

problem solving strategies leads to a super-linear speed-up in problem solving.

The Distribution of First Finishing Times

The previous experiment showed the behavior of the average time to first solution.

Due to the probabilistic nature of the search, and the exact choice of hints, the time

required to find a solution will vary substantially from run to run. Thus while we see

that cooperation improves average performance, it is also of interest to examine the

distribution of finishing times. A comparison of the distribution of fastest finishers for

cooperating agents and non–cooperating agents is shown in Fig. 3. It shows that for

cooperating agents the probability for finishing sooner is higher so that the benefit is seen

for most runs, not only on average.

The Distribution of All Finishing Times

The previous discussion is relevant to the case in which the time to first solution is

of most interest. In other kinds of problems, all the agents participate in a series of tasks

and the amount of work the entire group can complete in a given amount of time is the

relevant performance measure. This leads us to consider the distribution of solution times.

Moreover, examining this distribution provides a connection with the theory of section 5.

In this set of experiments all the agents used the same strategy but examined different

states due to their different initial locations in the state space and their choices from the

available hints. Our experiments explored several possible cases of agent interaction.

15

50 100 150 200 250
time

0.002

0.004

0.006

0.008

0.01

P(time)

Fig. 3. The distribution of first finishing times is peaked towards faster times for the cooperating case. The data used
are the same as in Fig. 2 for the three agent case. The dark points connected by black lines correspond to cooperating
agents and the gray corresponds to the non-cooperating case.

Specifically, the speed distribution for the cases a) non-cooperating agents, b) non-

cooperating agents with a partitioned search space, and c) cooperating agents, was

compiled for agents trying to solve the problemWOW + HOT = TEA. Fig. 4A shows

the resulting speed distribution for a typical run for each of the three cases, where speed

is defined as the inverse time to solve the problem for an agent. The striking overall

improvement in performance becomes apparent once we note that the speed is up to

100 times larger for the performance distribution of the cooperating agents than that

obtained for the non-cooperating case and about 10 times larger than the partitioned case.

However, this speed improvement is also partly due to a better search method used by

the cooperating agents. The distribution for the cooperative case using the results from

ten batches is shown with a linear scale in Fig. 4B. Note that the fastest performers,

the average performers and even the entire distribution for the cooperating agents is

shifted towards higher performance. We should point out that the actual speed-up for the

cooperative case, when the problem is easy or the hints are very good, can vary greatly

from run to run because it is very sensitive to the quality of the first few hints posted

to the blackboard. Similar results were obtained on other cryptarithmetic problems that

used between 5 and 10 different letters and had from 1 to over 100 solutions.

We also consider the effect of diversity on the distribution of all finishers. The speed

was fastest when all the agents had access to any hint. Although this corresponded

to lower diversity (i.e., all the agents used the same strategy), it was compensated by

a much higher average performance. Further, it was observed that by increasing the

diversity of the agents’ hint interpretation, the mode and median of the speed distribution

16

Pr
ob

(l
n(

sp
ee

d)
)

-8 -6 -4 -2 0 2
ln(speed)

0.1

0.2

0.3

0.4

200 400 600 800 1000
time

0.002

0.004

0.006

0.008

0.01

0.012

P(time)

Fig. 4. (A) Probability density distribution of ln(speed) obtained by fitting typical runs for agents trying to solve
WOW + HOT = TEA. The left most curve is for 100 non-cooperating agents, the center curve is for partitioned search
(using 720 partitions and agents) and the right most curve is for 100 cooperating agents. The left curve corresponds
to a exponential time distribution and the other two to lognormals (The connection between the lognormal and the
finishing time distribution is given in section 5.). The conversion to a log scale allows all three cases to be shown on
the same plot and also makes them appear similar to a normal distribution. (B) Probability vs. finishing time for 100
cooperating agents and 10 runs solvingWOW + HOT = TEA. Each agent chose hints from the blackboard using one
of five possible strategies. Each strategy selects hints of only a single length ranging from 3 to 7. The error bars are
statistical. The curve is a lognormal distribution using the data to obtain the parameters. Although the fit is not very
good, based on a significance test, it certainly has qualitatively the behavior expected from the discussion of section 5
which assumed the blackboard has had time to warm up before agents start solving the problem.

were reduced. This shows that with greater diversity the higher performers benefit while

the lower performers suffer.

The Effectiveness of Hints

It also worthwhile to note the effect of cooperation as the problems become more

difficult. One way of measuring the difficulty of problems is by the complexity ratio,

T/S. The table below shows the relative speed for the first finisher of 100 agents for

four problems of vastly different complexities, i.e., the ratio of speed of the cooperative

to non-cooperative cases. The data for the cooperative case came from simulation runs

while the behavior of the non-cooperative case was obtained theoretically (from Eq. 2 of

section 5). Note that as the problem becomes more difficult the importance of cooperation

in speed-up is increased. The relative increase becomes even more startling when one

considers that the fraction of hints posted on the blackboard that are subsets ofany of

the solutions (there may be more than one solution) decreases as the problems become

more complex. Thus the high performance is due to some agents finding combinations

of hints that lead to solutions.

17

Problem
ratio of

speeds
T/S

Fraction of hints

that are subsets of

solutions

AB + AC = DE 7 210 0.9-1.0

WOW + HOT =
TEA 45 1844 0.5-0.6

CLEAR +
WATER
= SCOTT

145 181440 0.1-0.2

DONALD +
GERALD =
ROBERT

315 3628880 0.004

Another way of studying the effect of cooperation vs. problem complexity is to vary

the effectiveness of the search performed by the agent by itself, without utilizing the

hints from the other agents, or theself-work. For example, suppose that when the agents

are not using hints they perform a depth-first backtrack search, each using a randomly

selected ordering for the variables. During the depth-first search the agents have the

opportunity to prune partial states which do not lead to any solution. For example, if

some columns do not add up correctly there is no point in considering assignments to

uninstantiated letters for this state. Whenever a hint comes along it overwrites the current

partial state, in the same manner as for the agents using simple generate and test, so that

there may be very large jumps through the search space. We can simulate the effect

of this pruning by probabilistically pruning partially assigned states that are known not

to lead to a solution. (We can do this with cryptarithmetic because we can generate

all the solutions.) When the probability of pruning is small this corresponds to difficult

problems because the agents must instantiate nearly all the letters before pruning. The

results of this study, which are shown in Fig. 5, show the greater relative importance of

cooperation for harder problems.

Prior Knowledge

In many practical applications the agents start with some prior problem-specific

knowledge. We now consider the effect of the quality of the agents’ initial knowledge of

the search space. This was modelled by the inclusion of hints on the initial blackboard.

The effect of a non-empty starting blackboard is to significantly increase the number

of unique solutions found. This is because random hints will likely point to different

18

0.2 0.4 0.6 0.8 1
P(bt)0

2.5

5

7.5

10

12.5

15

17.5

20

Time

Fig. 5. Cooperation works best for harder problems. Time to first solution as a function of decreasing problem
hardness. Specifically, the plot shows the average time to first solution for 100 agents solving AB+AC=DE as a
function of the probability of pruning, P(bt), a state that is known not to lead to a solution. The left side of the
plot corresponds to “hard” problems where pruning of the search space is very poor, and the right side of the plot
corresponds to “easy” problems where pruning is very effective. The light line is for the case of non-cooperating agents,
in this case a depth-first search. The dark line is for the case where the agents spend 80% of their time doing depth-first
self-work and 20% cooperating, i.e., using hints from the blackboard. The lines show the best linear fits to the data.
The data points correspond to the average solution time from 50–100 runs. The error bars are the error of the mean.

solutions, whereas an empty blackboard implies that the attention of the agents is highly

focused by the first few arriving hints. Also, a non-empty starting blackboard can lead

to a smaller diversity because with many hints already available, the importance of hint

selection strategy becomes less important.

The initial contents of the blackboard also affect the overall performance of the

system. If hints are misleading, the agents will be slowed; if, on the other hand, hints

are useful then the overall performance will be improved, especially for the faster agents.

In general, as the number of hints present on the initial blackboard was increased, the

statistical fluctuations in the effectiveness of the hints decreased and ensuing performance

was enhanced.

Fluctuations

We have shown that cooperation can lead to a large performance increase, but how

consistent are these predictions? By running the same problem numerous times we can

get an idea of the fluctuations that can be expected. With an initially empty blackboard the

impact of the quality of the early hints can be easily observed. Fig. 6 shows two separate

runs of 100 agents solving the problemCLEAR+WATER=SCOTT. Although the two runs

agree with a lognormal distribution, they are quite different in terms of the speed at which

19

they solved the problem. These fluctuations are amplified by the multiplicative nature of

cooperation. We should point out however, that these differences became smaller as the

problem became more complex and the number of agents increased.

Pr
ob

(s
pe

ed
)

0.05 0.1 0.15 0.2

speed

40.0

80.0

120.0

160.0

Fig. 6. The quality of hints can lead to vastly different lognormal distribution parameters. The data are speed
distributions from two separate runs of 100 agents solving the problemCLEAR+WATER=SCOTT. Note that both
distributions fit well to a lognormal. The error bars are statistical.

It is possible to study the effect on the overall solution time distribution of making

solutions available to the agents on the blackboard. The option of not posting complete

solutions had the effect of slowing down the slower finishers. When the solutions were

posted for the problemsWOW+HOT=TEAandCLEAR+WATER=SCOTT, about half the

agents found the solution by reading one directly.

The Cost of Accessing Hints

So far we have consider the access to hints for the agents to be cost free. In real

situations, this is not the case and it useful to see the effect that access cost has on the

speed distribution. When access cost was introduced in our experiments (measured in

extra time per step) the functional behavior still followed a lognormal distribution, albeit

peaked at slower speeds than the one without access cost. Fig. 7 shows the effect of

accessing hints where the time cost of an access is proportional to the length of the hint

accessed. Notice that, although the time cost significantly slows down time to solution,

cooperating agents can still solve the problem much faster than non-cooperating ones.

Satisficing Searches

In many situations it is not possible to wait until a full solution is found because

of a time constraint. In these cases the “best” partial solution found at the stopping

20

0.1 0.2 0.3 0.4 0.5

4.0

8.0

12.0

16.0

20.0

24.0

Fig. 7. Adding a cost for accessing hints slows down problem solving. The plot is the probability of speed versus
speed. The data and fitted curve are for a typical run of 100 agents solving the problemWOW+HOT=TEA. Each hint
access causes a time delay in time units equal to the number of letters in the hint. The average evaluation between
blackboard hint accesses was one time unit. The gray curve shows the fitted curve from another typical run but with
no cost for hint access for comparison.

time is called at “satisficing” solution20. One way to study satisficing searches within

the cooperative framework described above is by examining the best partial solution a

collection of cooperating agents have versus a set of non-cooperating ones as a function

of time. Fig. 8 gives a comparison of satisficing searches for cooperating versus non-

cooperating agents.

Other Observations

We now make some general observations concerning our implementation of cooper-

ative problem solving. A notable difference between non-cooperating agents and cooper-

ating ones is in the average change of the number of correctly added columns after each

new hint was applied. On average, although each hint helped slightly, their overall effect

was to increase the rate at which correct columns were found, leading to a huge increase

in the global performance of the system. Although the size of the blackboard increased as

all the agents solved the problem, there is a point at which the addition of new hints does

not add useful information but merely reinforces it. This is because once a representative

sample of hints has been found, the blackboard is effectively saturated and any other hints

only serve to statistically improve the hint distribution rather than adding any systemati-

cally new information. For example, consider a ten letter cryptarithmetic problem. Once

an eight letter hint has been found that leads to a solution, it is not particularly useful to

add another one of the same length that is redundant. In situations where the quality of

the hints improves noticeably over time it will still be beneficial to add new hints since

21

5 10 15 20
steps0

2

4

6

8

10

Longest hint

Fig. 8. Cooperation improves the results of satisficing search. Comparison of a satisficing search for a given number
of steps for 10 agents solving the problemDONALD+GERALD=ROBERT. Each cooperating agent was able to access
any of the hints on the global blackboard. Each non-cooperating agent was able to access only the hints on its
own blackboard. The vertical axis is the average, taken over 100 runs, of the maximum number of letters (out of a
possible 10) that add correctly. In the cooperating case this is simply the longest hint on the blackboard at a given
time. The cooperating agents (black dots connected by black lines) are seen to maintain a higher average than the
non-cooperating agents (gray dots connected by gray lines), again showing the benefits of cooperation. The errors
of the mean are too small to be seen on the plot. In the non-cooperating case this is the maximum of the longest
hint of each agent’s blackboard.

the density of good hints on the blackboard will increase, thereby improving the problem

solving ability of the remaining agents. The effect of a saturated blackboard is that the

size of the blackboard need not be unbounded in order to obtain significant speed-up.

4.2. Problem Solving by Hierarchical Organizations

To model the effect of more complex organizations, we considered several alternatives

to committees in both the hierarchical structure and the interactions among agents. These

alternatives were based on the branching factor between levels, the number of levels, cost

of access between and within levels, and other parameters of hierarchies. Under certain

conditions a hierarchy can perform poorly. However its performance can be improved

by the addition of informal links between nodes21. To investigate its applicability to

search, we compare behavior in hierarchies, illustrated in Fig. 9, with and without such

informal links.

For search in the hierarchy we associate a blackboard with each agent, but instead of

restricting agents to use only their own blackboard (a non-cooperative search), they now

can post and read hints from other ones as well. Unlike the committee case involving a

single central blackboard, the agents now need to decide where to send and from where

to receive their hints. Thus, depending on the particular hierarchy involved different

22

Fig. 9. Left: A strict hierarchy with branching factor three and depth three.Right: The same tree with two additional
“informal” links in dashes. The informal links have little or no communication cost and do not exist in a formal
hierarchy.

blackboards (agent’s individual postings of good columns for the cryptarithmetic problem)

were accessible via different costs.

In our experiments the cost of communication increased the greater the distance

between the nodes in question, as is the case in real hierarchies. It should be noted

that only read access was attributed a cost. Also, although write cost was considered

to be free, the likelihood of posting a hint on a different level blackboard decreased the

further away the two blackboards were. This situation only applied for the cases where

the better hints were not restricted to higher levels.

Fig. 10 shows speed distributions for a purely formal hierarchy and a hierarchy with

many informal links. The difference in speed-up between the curves depends on the costs

and probability of accessing other nodes as well as the quality of hints at a given level.

The speed to solution was found to be greater for organizations that had informal links,

i.e., links that violated the strict hierarchy and had zero communication cost. It remains

an open question exactly how changes in organizational structure affect the benefit of

cooperation.

We also found that hierarchies in which higher quality information was passed only

to higher levels achieved a higher performance than those in which information could

be posted anywhere. It is interesting to note that with informal links and where no

communication among siblings was allowed, the top level agent solved the problem

much more frequently than would be expected by its representation in the population. In

cases where there was sibling communication or informal links were allowed, the agents

23

0.1 0.2 0.3 0.4

20

40

60

80

100

120

Fig. 10. Speed probability distribution for 100 runs of 111 hierarchical agents trying to solveWOW+ HOT= TEA. The
branching ratio was 10 and depth of the organization 3. The light curve shows the case where there were sibling links
but no informal links. The dark curve shows the case where the number of informal links added to each node was equal
to the number of its direct descendents, siblings, and all ancestors (except the top node received no informal links).

at the lowest level solved the problem more frequently than would be expected based

simply on their relative occurrence in the organization.

5. Theory

In this section we present simple theoretical descriptions of the behavior of both

independent and cooperative agents that illustrates the large benefit of cooperation. Our

theory of cooperation addresses the issue of when and what type of cooperation is likely to

be beneficial under certain conditions. Specifically, for a group of agents we characterize

their overall performance in terms of their individual search methods and how they

combine their efforts. There are a number of possibilities for each of these specifications,

as discussed in section 3.

We should note that the experiments contain elements that make them correspond to

realistic search implementations, but which complicate theoretical description. Also, not

every possible variation of the simulations can be described in a simple theoretical way.

Thus, the theories presented here are not exact analogues to every simulation experiment

described in the previous section, but provide a simple explanation of the general

phenomenon and, most importantly, suggest it is more general than just cryptarithmetic.

24

5.1. Single agent behavior

The search for an individual agent consists of a series of steps in which examines

states in search space. Its behavior can be described in terms of the probability of finding

a solution at stepk, Psuccess(k), given that no solution was found in previous steps.

In general, this will depend on what choices were made in the previous steps. The

probability that a particular agent solves the problem at itskth step is then given by

Psolve(k) =

k�1Y
�=1

[1 � Psuccess(�)]Psuccess(k) (1)

wherek runs from 1 (finding the correct answer immediately) to infinity (never finding

a solution). It is also useful to define the cumulative probability of solving the problem

at or after stepk: Csolve(k) =
1P
�=k

Psolve(�).

For example, in a deterministic search in which the solution is found at stepK has

Psolve(k) = Psuccess(k) = �kK. In the case of random generate and test with replacement

(so there is no memory of previously examined states),Psuccess(k) = S=T , whereT is

the total number of search states andS the number of solutions. This gives the familiar

geometric distribution

Psolve(k) = (1 � S=T)
k�1

S=T: (2)

When states examined are not revisited,Psuccess(k) = S=(T � k + 1) and

Psolve(k) =
S

T � k + 1

k�1Y
j=1

�
1 �

S

T � j + 1

�
: (3)

which asymptotically approaches Eq. 2 fork � T . Note that both distributions mono-

tonically decrease with the number of steps.

5.2. Relating search steps to time

The above distributions describe the search in terms of steps. Giving results in

terms of time required to find the solution requires specifying how long the steps take

to compute. Specifically, letP (k; t)dt be the probability for stepk to take place in the

time interval(t; t+ dt), which will generally depend on the choices made in the previous

steps. This can be used to find the distribution for thetime to first find a solution:

Psolve(t) =

1X
k=1

Psolve(k)P (k; t) (4)

25

and the corresponding cumulative distributionCsolve(t) =
R
1

t Psolve(�)d� to solve the

problem at or after timet. The average solution time is given bytavg =
R
1

0
tPsolve(t)dt,

which can also be written astavg =
R
1

0 Csolve(t)dt providedCsolve(t) �
1
t as t ! 1.

Alternatively, one can describe the speed with which a problem is solved, defined as the

inverse of the solution time. The distribution of speeds is justPspeed(s) = Psolve(1=s)=s
2.

As discussed in section 3.3, the details of this characterization will be complicated

when interactions between agents and communications costs are taken into account. The

simplest case is to use synchronized uniform steps, in which case the description in terms

of search steps applies directly as a description in terms of time. In our experiments we

used a somewhat more complex model to model asynchrony and variation in time to

complete each step. Specifically, we assumed that the agents perform their search steps

at a rate� and that the time between steps is independent of the previous steps. These

assumptions give the familiar Poisson distribution fork events in timet that occur at an

average rate�, p(k; t; �) =
(�t)ke��t

k! . The probability density for the time at which the

kth step occurs for a Poisson process is given by the Gamma distribution,

P (k; t) =
�(�t)

k�1
e��t

(k � 1)!
= �p(k; t; �): (5)

We should note that the assumption of a Poisson process gives essentially the same

behavior as uniform steps in the regime of interest for our theory (i.e., when the problem

is sufficiently difficult that many steps are required to solve it, even with cooperation).

One other issue is that the time required to complete each step could depend on the

number of agents. In particular, if the processes all share the same processor, the effective

rate at which steps are performed will be inversely proportional to the number of agents.

For simplicity, we suppose each agent runs on its own processor so we can take� to

be independent ofN. This choice, which corresponds to our experimental simulations,

has no effect on theratio of performance of various search methods, e.g., cooperative

and noncooperative.

As an example, consider the case wherePsuccess(k) = p is independent ofk, e.g.,

random generate and test with replacement which hasp = S=T . Using Eqs. 2 and 5

in Eq. 4 gives

Psolve(t) =

1X
k=1

p(1 � p)
k�1

�
(�t)

k�1

(k � 1)!
e��t

= �pe��pt

(6)

26

andCsolve(t) = e��pt. The average time to solution is 1/�p. The corresponding speed

distribution is

Pspeed(s) =
�p

s2
e��p=s (7)

These results show that the solution time for a single agent is governed by the density

of solutions, i.e., the ratio of the number of solutions to the number of possible states in

the search space, which we use as a measure of problem complexity.

5.3. Non-cooperative agents

We now turn to the behavior of a collection ofN independent agents involved in a

search. LetP (N)

solve(t)dt be the probability that at least one of theN agents first solves

the problem during(t; t+ dt) with C
(N)

solve(t) =
R
1

t P
(N)

solve(�)d� being the cumulative

distribution. (Note that this is for probability densities: if discrete steps are involved, the

density involves delta functions and it is easier to work directly with the probability to

solve at a given step which isP (N)

solve(k) = C
(N)

solve(k)�C
(N)

solve(k + 1).) The average time to

solution for the collection of agents (i.e., average time until one agent gets a solution) is

t
(N)
avg =

Z
1

0

tP
(N)

solve(t)dt (8)

This can be expressed in terms of the individual agents’ search methods. Specifically,

let �i be the random variable denoting when agenti solves the problem. The probability

this is greater thant is denoted byC i
solve(t). Then� = min (�1; . . . ; �N) is the time for

the first of a collection ofN agents to solve the problem. With the independence of the

agents, the probability this will be greater thant is

C
(N)

solve(t) =

NY
i=1

C i
solve(t) (9)

i.e., to be greater thant, all agents must take longer thant to solve the problem.

Returning to the example of random generate and test with a Poisson step distribution

in which all agents use the same search method we have from Eq. 6P i
solve(t) = �pe��pt

for all i. This gives

P
(N)

solve(t) = N�pe�N�pt (10)

so thatN independent agents all using this search method behave as a single agent going

N times faster. In particular we havet(N)
avg = 1=N�p, i.e., a collection ofN agents solves

the problemN times as fast as a single one.

27

If instead the steps are synchronized and uniform, using Eq. 2 we getP
(N)

solve(k) =

(1� p)
N(k�1)

h
1� (1 � p)

N
i

which is a geometric distribution as a function of number

of steps to find a solution. (Previously8, we stated that the distribution was geometric as

a function of time rather than as a number of steps. This is not formally true, although in

the range of our interest it is asymptotically correct.) We should note that the behavior

of this distribution, and in particular the average solution time, is the same as that given

above for Poisson steps when the uniform steps are of length1
� , providedNp � 1,

which is the limit of our interest, since otherwise there are so many agents that they can

independently solve the problem in just a few steps.

If the agents work in a partitioned space, the behavior is the same as above with

the exception that each agent has a different probability to find a solution. That is,

instead of the uniform valuePsuccess(k) = p = S=T , agenti now hasP i
success(k) =

Si=(T=N) � pi (assuming partition into equal sized parts) whereSi is the number of

solutions in the partition given to agenti and
P

Si = S so that
P

pi = Np. This gives

C i
solve(k) = (1� pi)

k�1 andC(N)

solve(k) =
NQ
i=1

(1 � pi)
k�1
� �k�1. Hence the distribution

of number of steps to find a solution becomes

P
(N)

solve(k) = �k�1(1� �) (11)

As for the nonpartitioned case, this is also a geometric distribution. With uniform steps

of length 1
�

, the average solution time is

tNavg =
1

�[1�
Q

(1 � pi)]
=

1

�(1� �)
(12)

Because of the variation in the individualSi values,� =
Q
i

(1 � pi) will usually be

smaller than(1� p)
N thus giving a more rapid search than the unpartitioned case.

5.4. Cooperative agents

The main question to be answered by a cooperative search theory is how to model

the effect of hints. As discussed in section 3.5, hints modify the behavior of the search

by focusing effort in certain parts of the space. In this section we present a simple theory

of the consequences of this focusing.

In general, the effectiveness of a hint will depend on what an agent has done, e.g., how

good a partial state it currently has (as an extreme case, an agent finding a solution could

generate a perfect hint for the others). This complicates the theory since it means agents

28

are no longer independent and the simple relationship of Eq. 9 between the behavior of

individual searches and that of the collection of agents is no longer valid. Nevertheless,

we can obtain insight into the effect of hints and retain this simple relationship by treating

the hints as externally given and not affected by the status of the agents’ searches. This is

not realistic when the quality of hints (or their ability to be usefully interpreted) depends

on the state of the sending or receiving agents, but could be a useful approximation

when agents are using very different strategies so that there is little or no correlation

between where an agent is with respect to its own strategy and the usefulness of a hint it

generates for another agent. Alternatively, this can be viewed as an approximate “mean-

field” theory in which agents are assumed to interact with hints whose effectiveness is

that produced by an average agent. (Note that this doesn’t necessarily mean that all

hints must be the same, just that the distribution of hint effectiveness doesn’t depend

on the state of the sending or receiving agents.) The enhanced cooperative performance

predicted by this simplified theory is observed in our experiments, suggesting that the

simplified theory still captures the main phenomena.

Deterministic Search

In a deterministic search, the possible states are examined in some pre-specified order

until a solution is found. A hint can be viewed as pruning the search space, as in the

example given in section 3.2. The hint effectiveness is represented numerically by the

ratio of the amount of search it leaves after application to that before. Thus a perfect hint

will have a hint value, orh-value, of 0 and a hint that does not move the agent closer

or further from the solution has anh-value of 1. h-values greater than 1 mean that after

application of the hint the agent is further away from a solution than it was before. Agents

can interpret the same hint differently when they are in different parts of the search space.

Thus, in general each hint will have a differenth-value for each agent that uses it.

In a deterministic search method, at each step the agent will receive some number of

hints (possibly zero), determine the next state to examine and test whether it is a solution.

The use of hints will cause the agent to move to some different location in the space

and continue its search from there, possibly restricting the states it examines to a subset

of the original states. This means that, for agenti, the search remaining after stepk is

related to the search remaining after the previous step by

hi(k)T = hi(k � 1)T hk!i � 1 (13)

wherehk!i is the net h–value of the hints that are used during thekth search step of

the ith agent after any previous hints have been applied. Note thathk!i = 1 if no hints

29

are used. This gives

hi(k)T = hi(0)T

kY
j=1

hj!i �

kX
j=1

kY
l=j+1

hl!i (14)

wherehi(0)T is the number of steps required to find a solution without the use of hints.

The process terminates when the remaining space reaches zero.

As additional hints arrive during a search, eventually they will be repeating informa-

tion an agent already has and the correspondinghk!i values will be near one, i.e., have

no effect on the search. This is simply modeled by assuming there is some maximum

numberH of distinct hints: once an agent has received all of them, there is no new

information available from additional hints. Furthermore we suppose that while these

distinct hints are being received, the successiveh-values are not too correlated (i.e., the

ability to use a hint is not strongly related to the previous hints received). This gives

hk!i =
Q
l

h
(l)

k!i
whereh(l)

k!i
is theh-value of thelth hint received during stepk.

With these simplifications we can make a specific comparison between cooperative

and noncooperative searches. As an extreme contrast, suppose all the hints are available

at the first step, corresponding to an extremely rapid rate of hint generation. Then

we havehi(k)T = hi(0)T
HQ
l=1

h
(l)

1!i � k and this agent’s search completes at step

k
i
solve = hi(0)T

HQ
l=1

h
(l)

1!i. When the number of steps involved is large and they occur at

a rate�, this leads to a lognormal distribution of the number of steps required for the

agents to complete their searches9. Specifically, we take the logarithm of this expression

for kisolve. If the individualh-values aren’t too correlated andH is large, then the Central

Limit Theorem applies to
P

lnh
(l)

1!i to give a normal distribution with meanH� and

varianceH�
2 where� and� are, respectively, the mean and standard deviation of the

logarithms of theh-values. For simplicity, we suppose these moments are the same for

each agent.

Finally, this needs to be related to the distribution of solution times. (Relating a

product of steps to completion time is a subtle problem often overlooked, as in Ref. 22.)

In our case, if the steps take place at a uniform rate�, the solution times for the individual

agents are then determined by

P
i
solve(t) � �

�
H� + ln

hi(0)T

�
;

p
H �; t

�
(15)

30

where�(m;s; t) = 1

st
p
2�

e
� (ln t�m)2

2s2 is the lognormal distribution23. If processing hints

incurs an extra costc compared to the noncooperative case, then this distribution is

changed by reducing the effective rate of the steps, i.e.,� ! �
1+c

which shifts the

distribution to larger times. Finally, the distribution of time to first solution forN agents

is then obtained from this using Eq. 9. Note that the highest speed that can be achieved

in the process is one step, which corresponds to the situation where an agent starts

with the state containing the answer. This provides an effective cutoff to the lognormal

distribution for high performers, eliminating the familiar anomalies of the moments24.

By comparison, without hints agenti will require hi(0)T steps to find a solution

and the collection of non-cooperating agents will requiremin
i
hi(0)T steps. Because

the lognormal distribution has an enhanced tail, it will generally give much higher

performance (measured by the time to find a solution) for a large group of agents. In

the more realistic case in which hints arrive more slowly, Eq. 14, gives a combination

of multiplicative and additive contributions to the solution time so the distribution will

not be strictly lognormal. However numerical evaluation of the equation does show a

similar distribution with an enhanced high performance tail.

A remaining question is how the number of effectively independent hintsH relates to

the number of agentsN. At one extreme, if all agents use exactly the same search method

then they will all generate the same hints andH will be independent of the number of

agents. In such a case, there is nothing to be gained from sharing information. A constant

value of H also arises if agents use more sophisticated search methods which prune

regions of the search space (e.g., our experiments in which each agent was restricted to

post and read hints from its own blackboard only) but don’t share information. The more

interesting case occurs when the agents have different search strategies or expertise and

can produce and use hints in ways that others cannot. Such a case offers the possibility of

a large cooperative enhancement in whichH grows withN when hints are shared. Thus

cooperation provides a benefit not only through multiplicative pruning of the search space

(which sophisticated individual search methods can also provide) but also by increasing

the range of hints that each agent can apply.

This theory can also be used to give a simple criterion for when cooperation is

expected to be more effective than independent search. Suppose processing a hint during

a step incurs an additional costc (i.e., the additional time required to complete the step

due to interpreting a hint). From Eq. 13, using one hint at stepk will incur a total cost

of 1 + c and reduce the remaining search space by1 + hi(k � 1)T

�
1� h

(1)

k!i

�
whereas

31

independent search will incur a unit cost and reduce the space by one state. Thus the

expected benefit of cooperation for a single agent outweighs the cost when

hi(k � 1)T (1 � hhi) > c (16)

wherehhi is the expected hint effectiveness for the agent at stepk andhi(k � 1)T is the

remaining search at the start of the step. In practice, neither of these quantities is known

precisely during the search so estimates must be used. Nevertheless, this gives qualitative

insight into the conditions under which a cooperative approach would be beneficial: hints

on average must be helpful in pruning, i.e.,hhi < 1, and the remaining search space must

be large so that pruning by the hints will eliminate many states.

This criterion essentially describes when cooperation is expected to be beneficial

for an individual agent. However, when a group of agents searches and only the first

solution found by any agent is desired (or best solution in a given amount of time for a

satisficing search), this criterion for cooperation is too strict. That is, cooperation could

be beneficial for the group as a whole even if many or most of the agents go more slowly

due to misleading hints: such agents could still help by generating a few good hints

which greatly increase the speed of the few high performers.

Probabilistic Search

With probabilistic search methods the amount of search remaining after reaching a

particular state will vary depending on subsequent random choices. Thus the description

of hints as pruning the remaining search space for a deterministic method must be

generalized. Hints can still be viewed as focusing the search onto certain subsets of

the search space. Good hints will then decrease the expected time to find a solution,

even though there will be fluctuations due to the probabilistic search method. Misleading

hints, on the other hand, will increase the expected time to find a solution. This suggests

that an appropriate generalization of Eq. 13 is

k
i
avg(k) = k

i
avg(k � 1)hk!i � � (17)

where kiavg(k) is the expected number of steps to a solution after stepk for agent

i (assuming no more hints are received) and� is one if the search is done without

replacement (states never examined more than once) and zero if states can be reexamined.

In this context, theh-values characterize the change inexpectednumber of steps to a

solution produced by a hint.

32

This multiplicative process gives behavior qualitatively similar to the deterministic

theory described above. For example, consider random generate and test with replacement

(so � = 0). Then we havekiavg(k) = k
i
avg(0)

kQ
j=1

hj!i. With very rapid generation of

hints this becomeskiavg(k) = k
i
avg(0)

HQ
l=1

h
(l)
1!i independent ofk and thus the expected

number of steps to reach a solution is distributed lognormally among the agents.

Using Eq. 2, for simple random generate and test, the expected number of steps to a

solution for agenti is related to the probability for selecting a solution at each step by

k
i
avg(k) =

1

P i
success(k)

(18)

In particular, if the agents search in the full, unpartitioned space, this givesk
i
avg(0) =

1
p
=

T
S

. Thus for this type of search the individualP i
success(k) are also lognormally

distributed and independent ofk, when the hints arrive very rapidly and so are available

at the first step.

To compare the predictions of this theory with the behavior of noncooperative search,

as well as our experimental results, we evaluated the expected time to first solution for a

group of N agents using random generate and test. Specifically, for the noncooperative

searches, Eq. 12 was used to evaluate the average solution time (with� = 1) for N agents

searching the full space (sopi = S=T) as well as a partitioned space (sopi � Si=(T=N),

the approximation being due to the fact that the partitions were not exactly uniform

when the number of agents does not evenly divide the number of search states). The

cooperative results were obtained by using Eq. 12 with the values ofpi drawn from a

lognormal distribution, but constrained to be no larger than one. This corresponds to

the behavior expected when all the hints are available at the first step. Further, we

supposed that additional agents introduce extra diversity soH increases withN. Such

a comparison is shown in Fig. 11. Note the super-linear speedup due to cooperation

when agents introduce additional diversity. By comparison, both the partitioned and

unpartitioned noncooperative methods given linear speedup. All methods eventually

saturate at a maximum speed of one, well beyond the range of agents shown in the

figure.

These examples have considered the case where all the hints are available at the

beginning of the search. A more realistic case is to have agents search while they

receive hints. From Eq. 18, this corresponds to the values ofP
i
success(k) changing by a

33

20 40 60 80 100

0.025

0.05

0.075

0.1

0.125

0.15

0.175

Fig. 11. Search speed (defined as the reciprocal of the average time to find a solution) vs.N for cooperative and
non-cooperative search. In all cases the agents use random generate and test with replacement. For the cooperative
case, the number of diverse hints equals the number of agents,H=N, and the moments of the hint effectiveness values
were� = 0; � = 0:2. The search space consisted ofS=1 andT=1000. The black curve is the cooperative case, the
gray curve is non-cooperative partitioned search, and the dashed curve is unpartitioned non-cooperative search.

multiplicative factor when hints are received during the search. The rate of hint arrival

can range from very fast so all hints are available before the first step, to very slow so

the problem is solved before any hints arrive (effectively a noncooperative case). As a

specific example, we suppose the hints arrive probabilistically (e.g., at each step, for each

agent, each unused hint has a probabilityph to arrive). Note thatph = 0 corresponds to

the case of no hints, andph = 1 has all the hints arriving at the first step, as assumed in

the previous example. This description of hint arrivals, together with a characterization

of their effectiveness (i.e., values for� and �) characterize the values ofP i
success(k).

With Eqs. 1 and 9, this gives the distribution of number of steps to reach a solution,

P
N
solve(k). In particular, we have

C
N
solve(k) =

NY
i=1

k�1Y
m=1

�
1� P

i
success(m)

�
: (19)

This distribution, shown in Fig. 12, is geometric for the non-cooperating case and

monotonic but not geometric when all hints are available at the start. When the hints

arrive during the search, we see a transition between these behaviors: initially the solution

probability is near that of the non-cooperating case (before many hints are available, the

agents act effectively as if they do not cooperate); then increases toward that of having

all the hints.

34

0 50 100 150 200

0.02

0.04

0.06

0.08

0.1

Fig. 12. Distribution of first finishers,P (N)
solve

(k) vs. stepk for the case ofN = 10; H = 10; S = 1; T = 1000
and with the hints characterized by� = 0; � = 1. The solid black curve hasph = 1, i.e., all hints available at the
start of the problem. The dashed curve hasph = 0, corresponding to no hints. The gray curves are intermediate
cases withph = 0:1 (light gray) andph = 0:01 (dark gray) which correspond to different hint arrival rates. Note that
the cases where the hints arrive over time are unimodal corresponding qualitatively to the experimental first finisher
distribution in Fig. 3.

5.5. Dynamic cooperation

The above discussion presented simple criteria for when cooperation is beneficial.

They involve the cost to process hints and the effectiveness of the hints from various

agents. In realistic searches, these may vary with time, e.g., as better hints become

available during the search. This implies that the criteria will change dynamically so that

the relative benefit of cooperation will change. Exploiting this possibility requires either

a central decision to tell the agents when to cooperate or allowing the agents themselves

to decide. Centralized decisions are simpler to implement but are unlikely to be able to

rapidly exploit local opportunities in a distributed environment. For instance, in a search,

agents that appear to be near solutions (e.g., have many correct letters) may be better

off by ignoring possibly distracting hints while those encountering many deadends may

improve by accepting hints from more successful agents.

If decisions are made locally, agents may choose to cooperate based on whether

they perceive some net benefit to their own search. Ideally, this benefit would be

designed to reflect the expected contribution to the overall progress of the group of

agents. Unfortunately, such global information may not be available to the agents in a

timely manner or may be difficult to analyze. Thus in such communities one is often

forced to rely on simpler estimates of the local benefit to each agent. Examples of

this kind of distributed decision-making occur in human market economies and some

35

proposals for distributed computation25. This then raises the interesting issue of collective

action problems which are present whenever an agent can benefit from the outcome of a

group activity without incurring the cost associated with its own participation. Since all

agents can opt to do so, this free riding mechanism implies that pervasive rationality will

always be in conflict with the collective good, thus preventing any group of agents from

spontaneously engaging in any cooperative action. This is the case even in situations

where the problem to be solved involves interaction over prolonged periods of time.

Analysis of this paradox has led to the conclusion that only small groups can sustain

collaboration26. In order to secure cooperation in large settings one therefore needs a

federated structure whereby the group is broken into smaller committees connected by

some hierarchical structure of monitoring and communication.

6. Discussion

In this paper we have shown how cooperating agents working towards the solution of

a constraint satisfaction problem can lead to a marked increase in the speed with which

they solve it compared to their working in isolation. In particular, we showed how a

diversity of cooperating agents can lead to a super-linear speed-up with agent number in

the time to solution. This was compared to the case of non-diverse and non-cooperating

agents where linear speed-up was observed.

The effects of diversity are especially important for the fastest and slowest agents.

For a sufficiently large number of agents, the group with the highest diversity was able

to solve the problem first. Interestingly, high diversity not only leads to very high

performers but to very low ones as well.

This work suggests an alternative to the current mode of constructing task-specific

computer programs that deal with constraint satisfaction problems. Rather than spending

all the effort in developing a monolithic program or perfect heuristic, it may be better to

have a set of relatively simple cooperating processes work concurrently on the problem

while communicating their partial results. This would imply the use of “hint engineers”

for coupling previously disjoint programs into interacting systems that are able to make

use of each others (imperfect) knowledge. Although we have tested our model against

only one type of constraint satisfaction problem, we believe that there are more general

problem solving settings where we expect cooperation to be beneficial.

In our cryptarithmetic implementation we defined hints in terms of information that

moved the agents toward a region of the space that could have a solution. Another

36

possibility is for hints to contain information that tends to move away from regions that

can have no solutions. Our theoretical derivation does not depend on which approach is

used, only that some part of the search space is pruned, or is more likely to contain a

solution. More generally, any search algorithm that agents may use will have parameters

that will have an impact on the effectiveness of cooperation. An intrinsic advantage of

cooperative search over purely algorithmic search is the former’s ability to make large

jumps in the search space by opportunistically utilizing shared information. Although

in some cases these jumps will prove detrimental, the ability to make large excursions

around the search space based on shared information is generally advantageous for at

least a few agents. Another consideration is when are the hints most useful for problem

solving. At the beginning of a problem the hints provide crucial information for starting

the agents off on a plausible course, but will usually be fairly nonspecific. Near the end of

the problem however, there are likely to be many detailed hints but also of less relevance

to the agents since they may have already discovered that information themselves. This

suggests that typical cooperative searches will both start and end with agents primarily

working on their own and that the main benefit of exchanging hints will occur in the

middle of the search.

Because our results provide a quantitative relationship between performance, number

of agents, and the ability of agents to make use of diverse hints, this new methodology

may be particularly useful in areas of artificial intelligence such as design, qualitative

reasoning, truth maintenance systems and machine learning. Researchers in these areas

are just starting to consider the benefits brought about by massive parallelism and

concurrency.

Our discussion focused on the benefits of cooperation among agents that search

the space differently (due to different initial states and different hints selected from

the blackboard). The most natural way to think of this is a collection of independent

processes, possibly running on separate processors. However, it is always possible to have

a single computational process that, in effect, multiplexes among the procedures followed

by this diverse set of agents. In this way, a single agent could also obtain the benefit

of cooperation discussed here. This ability of one computational process to emulate a

collection of other processes is quite distinct from other cases of cooperation, e.g., human

societies, where individuals have differing skills that are not easily transferred to others.

For computational processes, the issue is not so much cooperation as to what extent

partial results from a range of methods are used. That is, the cooperative speed-up is due

37

to applying a diverse set of methods to a problem, each of which fails under different

conditions and can sometimes benefit from information provided by other methods. We

have shown that even when the individual methods are imperfect and the information

exchanged is not always correct, the overall benefit can be very large. This can be

contrasted with the usual emphasis on improving individual methods. It is presently an

open question as to how to exploit this diversity explicitly in problem solving or to know

how to estimate ita priori.

Thus we see the emphasis here is on the diversity of methods available to approach

a problem, as well as their ability to sometimes benefit from the partial successes of each

other. In effect, we observe a huge speed-up as diversity and effectiveness of the exchange

of information increases. This contrasts with discussions of the speed-up due to parallel

processors in which the speed of a fixed algorithm is measured when running in a number

of processors. It is well known from Amdahl’s law that the speedup cannot be faster than

linear in the number of processors, and is usually less due to communication overheads.

There is no such restriction on the speed-up obtainable when additional diversity is

introduced, either in the form of new processes running on additional processors, or by

having a single algorithm incorporate additional methods.

One of the questions to be addressed is, how “dumb” agents can be yet still benefit

from cooperation? If agents are too simple then they will not be able to utilize the

information from other agents and thus not benefit from cooperation. For example, a

simple random generate and test search that replaces all letter assignments at each step

will immediately lose whatever potential benefit a hint gave it. As we saw, simple

search methods with some memory can benefit from hints. This issue arises in non-

computational examples as well. At the one end of the spectrum consider insect societies,

where individuals are very poor problem solvers but when cooperating they are able to

solve very complex tasks such as nest building, defense, and food gathering. At the other

end of the spectrum the agents of a scientific community are very good at individual

problem solving. This is greatly amplified by cooperation through publications and

collaborations. Because cooperation appears to improve problem solving at both extremes

of individual agent ability, from simple ones as in an insect society to scientists in a

technical community, the benefits of cooperation are widely applicable. The agents we

considered in our experiments were capable of only very simple interactions and behaviors

and yet achieved considerable performance improvement versus isolated agents.

In closing, we comment on the implications of these results for social and biological

38

organizations. In spite of the fact that we studied extremely simple agents (with no

learning capabilities, and no specialization) these results may also be relevant to the more

complex agents that make human organizations. We base our belief on the established

fact that measures of productivity in the scientific community22, individual problem-

solving27, as well as income distributions in a variety of economies, exhibit a lognormal

distribution23. Although those distributions have been accounted for in terms of individual

probabilities for a given agent to either obtain a certain publishable result or accrue a net

worth, cooperative efforts as studied in this paper do give rise to the same performance

characteristics, thus suggesting an alternative explanation.

7. Acknowledgements

This work was partially supported by the Air Force Office of Scientific Research

contract No. F49620–90–C-0086.

References

1. L. Gasser and M. Huhns.Distributed Artificial Intelligence Volume 2. Morgan

Kaufmann, San Mateo, 1989.

2. H. Penny Nii, Nelleke Aiello, and James Rice. Experiments on Cage and Poligon:

Measuring the performance of parallel blackboard systems. In Les Gasser and

Michael N. Huhns, editors,Distributed Artificial Intelligence, volume 2, pages

319–383. Morgan Kaufmann, San Mateo, CA, 1989.

3. William A. Kornfeld. The use of parallelism to implement heuristic search.

Technical Report 627, MIT AI Lab, 1981.

4. Kathleen Carley, Johan Kjaer-Hansen, Michael Prietula, and Allen Newell. Plural-

soar: A prolegomenom to artificial agents and organizational behavior. In Michael

Masuch and Massimo Warglien, editors,Artificial Intelligence in Organization and

Management Theory, chapter 4, pages 87–118. North-Holland, Amsterdam, 1992.

5. B. Axelrod and W. W. Hamilton. The evolution of cooperation.Science, 211:1390,

1981.

6. E. O. Wilson.The Insect Societies. Harvard University Press, Cambridge, 1971.

7. Peter J. Denning and Walter F. Tichy. Highly parallel computation.Science,

250(4985):1217–1222, November 30 1990.

39

8. Scott H. Clearwater, Bernardo A. Huberman, and Tad Hogg. Cooperative solution

of constraint satisfaction problems.Science, 254:1181–1183, 1991.

9. Bernardo A. Huberman. The performance of cooperative processes.Physica D,

42:38–47, 1990.

10. B. A. Huberman and T. Hogg. Phase transitions in artificial intelligence systems.

Artificial Intelligence, 33:155–171, 1987.

11. William A. Kornfeld. Combinatorially implosive algorithms.Communications of

the ACM, 25(10):734–738, October 1982.

12. David E. Goldberg.Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, NY, 1989.

13. A. K. Mackworth. Constraint satisfaction. In S. Shapiro and D. Eckroth, editors,

Encyclopedia of A.I., pages 205–211. John Wiley and Sons, 1987.

14. Allen Newell and Herbert A. Simon.Human Problem Solving. Prentice Hall, New

Jersey, 1972.

15. W. A. Kornfeld and C. E. Hewitt. The scientific community metaphor.IEEE

Transactions on Systems, Man and Cybernetics, SMC-11:24–33, 1981.

16. Jean-Louis Lauriere. A language and a program for stating and solving combina-

torial problems.Artificial Intelligence, 10:29–127, 1978.

17. R. Engelmore and T. Morgan.Blackboard Systems. Addison Wesley, Reading,

1988.

18. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.Introduction to

Algorithms. MIT Press, Cambridge, MA, 1990.

19. Gene M. Amdahl. Validity of a single processor approach to achieving large scale

computing capabilities.Proceedings of the AFIPS Computing Conference 30, 1967.

20. H. Simon.The Sciences of the Artificial. M.I.T. Press, Cambridge, MA, 1962.

21. Eric Lumer and Bernardo Huberman. Dynamics of resource allocation in distributed

systems. Technical Report P90-00007, Xerox Palo Alto Research Center, Palo Alto,

CA, 1990.

22. William Shockley. On the statistics of individual variations of productivity in

research laboratories.Proc. of the IRE, 45:279–290, 1957.

23. J. Aitchison and J. A. C. Brown.The Lognormal Distribution. Cambridge University

Press, Cambridge, 1969.

24. S. Redner. Random multiplicative processes: An elementary tutorial.Am. J. Phys.,

58(3):267–273, March 1990.

40

25. C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and S. Stornetta.

Spawn: A distributed computational economy. Technical Report P89-00025, Xerox

PARC, Palo Alto, CA, 1989.

26. Natalie Glance and Bernardo Huberman. Expectations, uncertainty and free rider

problems. Technical Report to appear, Xerox PARC, Palo Alto, CA, 1992.

27. David S. Bree. The distribution of problem-solving times: An examination of the

stages model.Br. J. Math. Stat. Psychol., 28:177–200, 1975.

41

