
Abstract

Over recent years, studies of human-computer interaction
(HCI) from sociological and anthropological perspectives
have offered radical new perspectives on how we use com-
puter systems. These have given rise to new models of
designing and studying interactive systems.

In this paper, we present a new proposal which looks not at
the way in which we design systems, but at the nature of the
systems we design. It presents the notion of an “account”—
a reflective representation that an interactive system can
offer of its own activity—and shows how it can be exploited
within a framework oriented around sociologically-informed
models of the contingent, improvised organisation of work.
This work not only introduces a new model of interactive
systems design, but also illustrates the use of reflective tech-
niques and models to create theoretical bridges between the
disciplines of system design and ethnomethodology.

1 Introduction

A spectre is haunting HCI; the spectre of ethnomethodology.

The past ten years have seen a significant change in the dis-
ciplinary constitution of Human-Computer Interaction and
studies of interactional behaviour. What was once the
domain of human factors and ergonomics specialists, and
then became the domain of cognitive psychologists, has
increasingly been colonised by sociologists and anthropolo-
gists. These disciplines have brought with them radically
new perspectives on the way in which human-computer
interaction is conducted.

One highly visible response to this shift in perspective has
been the emergence of new ways of conducting interface
design, and an increasing sensitivity to the details of users’
everyday working practices. However, we will argue here
that current work does not go far enough. Instead, what is
required—if we are to take these new perspectives as seri-
ously as they deserve—is a radical change, not only in the
ways in which we build interactive systems, but in the nature

of the systems thereby built. We will outline a new approach
we have been developing based on the use of causally-con-
nected reflective models of system and user interface
behaviour. Reflection is, so far, the only computational
model we have encountered with the power to address these
issues. In this paper, we detail this new approach, and the
elements of sociological analysis which underpin and moti-
vate it; and we argue that this represents not only a
significant new move in HCI, but also a critical area for the
development of reflective principles in everyday systems.

1.1 Ethnomethodology and HCI

In this paper, we will draw upon a particular branch of soci-
ology called ethnomethodology [Garfinkel, 1967]. A
growing number of researchers have been using this and
allied approaches in the analysis and design of interactive
systems.

Ethnomethodology’s roots lie in a respecification of the
issues of sociology. In particular, it reacts against a view of
human behaviour that places social actionwithin the frame
of social groupings and relationships which is the domain of
traditional sociological theory and discourse—categories
and their attendant social functions. Ethnomethodology’s
primary claim is that individuals donot, in their day to day
behaviour, act according to the rules and relationships which
sociological theorising lays down. Quite the opposite. The
structures, regularities and patterns of action and behaviour
which sociology identifies emergeout of the ordinary, every-
day action of individuals, working according to their own
common-sense understandings of the way the social world
works. These common-sense understandings are every bit as
valid as those of learned professors of traditional sociology.

From this basic observation, a new picture of social action
has arisen. It would neither be possible nor fruitful to detail
it here, but some simple characterisations are critical. The
ethnomethodological view emphasises the way in which
social action is not achieved through the execution of pre-
conceived plans or models of behaviour, but instead is

Organising User Interfaces Around Reflective Accounts

Paul Dourish*, Annette Adler† and Brian Cantwell Smith‡

*Rank Xerox Research Centre, Cambridge Lab (EuroPARC)
†Systems Architecture Group, Xerox Corporation

‡Xerox Palo Alto Research Center

dourish@cambridge.rxrc.xerox.com, adler@parc.xerox.com, bcsmith@parc.xerox.com

improvised moment-to-moment, according to the particulars
of the situation. The sequential structure of behaviour is
locally organised, and issituated in the context of particular
settings and times.

Ethnomethodology’s concern, since its beginning, has been
the organisation of human action and interaction. In 1987,
Suchman published“Plans and Situated Actions,”which
applied the same techniques and perspectives to the organi-
sation of interaction between humans and technology. In
doing so, she opened up significant new areas of investiga-
tion both for HCI researchers and ethnomethodologists. The
same techniques have now been applied to a wide range of
settings within HCI research, and most particularly have
become a significant component in research on Computer-
Supported Cooperative Work (CSCW). This perspective has
lent weight to the analyses and critiques of interactive tech-
nology, lending weight to the emergent Participatory Design
movement, and similar approaches encouraging new models
of HCI design practice.

Our focus, though, is at a more fundamental level. We want
to explore the implications of this new sociological view not
just for theways in which we build the artifacts of HCI, but
for thenature of the artifacts themselves; and, from there, we
want to understand what new artifacts would look like that
take the ethnomethodological perspective seriously.

1.2 Traditional Process HCI

The traditional view of interface work is stronglyprocess-
based. From this perspective, the function of the interface is
to guide the user through the regularised, well-understood
sequence of actions by which some goal is reached. The pro-
cess is uncovered (or made visible) by requirements
analysis, and subsequently encoded (or made invisible) in
design.

This traditional, process-oriented view structures the way in
which interfaces are designed, evaluated and studied.
Indeed, the regularisation it embodies extends to interface
design methodologies and formalisms, and can be seen, for
example, in the use of formal “automata” structures in the
description of interface activity, from interface transition
diagrams to workflow graphs and business process models.

The alternative view, which arises from sociological investi-
gations such as those cited above, is at odds with this process
orientation. Instead, it focuses on work as the improvised
management of local contingencies, and emphasises the way
in which regularisations in the conduct of activity at the
interface arise out of individual moment-to-moment action
(rather than the other way around). In this view, work is not
so much “performed” asachieved through improvisation and
local decision-making.

It is on this tension that we have been focussing attention.
Since computational design is inherently prescriptive, and,

of necessity, involves abstractions of action and processes,
how can it be made responsive to this view of the improvised
and unfolding organisation of user behaviour?

1.3 Improvisation and Resources

One starting point might be to ask, “how does the ‘process’
of improvisation proceed?” Unfortunately, this would be the
wrong question, and one that is almost impossible to answer.
Ethnographers spend years detailing the particular ways in
which particular activities are organised. What we can do,
though, is step back from the detailed descriptions and try to
draw out some general issues from the broad sweep of these
investigations.

Our starting point, then, is the view that the actions which
constitute work at the interface are locally organised; indeed,
the work process as a whole emerges from this sequence of
locally improvised actions. So the question which is going to
concern us is, what kind of information goes into this local
organising process? How are the improvisational “deci-
sions” made? If our goal is to support this character of work,
then a critical focus of design must be to provide information
or resources which support and inform the local, expedient
decision-making process, rather than to formalise and
encode the process itself. And once we have some idea what
the information might be, we’re then in a position to ask,
“how can it be applied?”

2 Operation and State

When humans use computer systems to perform some work,
it is clear that an important resource in the improvised
accomplishment of their activity is their belief about the
state of the system. What is it doing? How much has it done?
What will it do next? Why did it do that?

These questions are based on system state, and shape the
sequential organisation of action. It’s important to realise,
though, that it’s not the state information itself that’s valu-
able. After all, a user is generally engaged in accomplishing
some other work with the system, rather than performing a
detailed study of its behaviour. The information about what
the system is doing is only useful when it helps the user’s
task proceed (or helps the user to progress). So what’s really
important to the user is therelationship between the state of
the system and the state of the work which the user is trying
to accomplish. When such a relationship can be established,
then information about the state of the system can be used to
understand and organise on-going working activity.

Relevant state information is readily apparent in most
devices we deal with day to day. Wheels turn, bits of paper
come in and out, and curious noises (and sometimes smells)
emerge. Visual access, operating noises and observable
behaviour all provide information about the system’s state
from moment to moment; we can see and hear information

about the state of devices and mechanisms which we might
want to use. In saying that, though, it’s important to recogn-
ise the distinction between what we see and hear, and what
weunderstand about device state. On their own, the various
resources accessible to the user aren’t of much use; some
greater context is needed before they become meaningful.

In particular, a user’s view of the relationship between the
state of the system and the state of their work is rooted in
some belief—however incomplete, inaccurate or naive—
abouthow the system works. This is true for almost anything.
For instance, the variety of resources which support the
activity of driving a car—such as the sound of the engine and
the feel of the clutch—only make sense within the context of
some (possibly incorrect) model of how a car works in the
course of getting someone from A to B. This lets us interpret
not only the information, but also its consequences for our
activity. Similarly, activity (particularly “situated” activity)
is organised around, and depends upon, these sorts of under-
standings; they allow us to ask questions like, “what is the
system doing?”, “what do I want to do next?”, and “how
should I go about it?”.

The next question is, where do these understandings come
from? Clearly, there are many sources. One of the most
important is our own everyday experiences, and the pictures
of structure and causation which we build up as a result of
daily interactions with all sorts of devices. Other sources
include the experiences of others, in stories, advice and anec-
dotes; others include formal instruction—courses, manuals,
and so forth. One other important source is essentiallycul-
tural—the everyday understandings of devices which we
gain as a result of living in a world of Euclidean space, New-
tonian mechanics and the internal combustion engine.

Clearly, however, one of the most important components of
this understanding is thestory the system tells about itself—
how it presents its own operation and state (and the relation-
ship between the two). Some of this is explicit, being part of
the way in which we might interact with a device; some may
be more implicit, such as the noises which devices make in
operation. Explicit or implicit, though, it all contributes to
the story.

Mechanical (or partly mechanical) devices are physically
embodied, and right there in the world with us, giving us this
information. Indeed, when a photocopier needs a paper jam
cleared out, we might get more information than we bar-
gained for. Gibson’s [1979] notion of theaffordances for
action which a situation offers to appropriately-equipped
individuals begins to relate activity to this notion of embod-
iedness. Software systems have no observable physical
embodiment, though, and so the user interface is the only
place where the user can get a view into the system’s
machinery.

Aspects of the interface and the way it behaves are sugges-
tive of the system’s capabilities, and of the sorts of temporal

or causal constraints acting on it. These contribute to the
understanding the user builds up of the system’s operation
and the relationship of its components and activity to the
work the user is attempting to perform. Again, this presenta-
tion has both explicit aspects (e.g.the iconic representations
in direct manipulation interfaces) and implicit ones (e.g. the
dynamic or temporal properties of interactions).

So if we want to support improvised action, then we have to
focus on two things—on the resources, presented in the
interface, that support the improvisation; and, critically, on
the model the system presents of its own behaviour, which
contributes to the context in which these resources can be
interpreted and hence supports improvisation.

There’s clearly meta-ness here; the system is representing
itself, and so there’s clearly a leaning towards a reflective
solution. But before going further, we must consider how the
type of information we’re considering here is dealt with in
existing systems; and that will turn out to be familiar to the
reflection community, too.

3 Connection and Disconnection

Given the importance of this “self-revealing” aspect of the
interface, we must ask what the relationship is between the
presentation that the interface offers and theactual operation
of the system. How is this relationship structured, and how is
it maintained? These are important questions, and they lead
us to identify a problem in maintaining this relationship—a
problem ofconnection.

Before worrying about how information about system activ-
ity should be presented to the user, we need to understand
how the interface component can find out what’s going on in

improvised action

available resources

understandings of
system operation

system’s story culturalexperience
understandings

................

FIGURE 1: The resources that underpin improvised action
are interpreted in a context which is formed, in part, by the
story the system tells about its own behaviour.

unfolding sequential organisation of

................

the first place. There are essentially two ways that an inter-
face can discover information about the activity of
underlying system components. The first is that it may be
constructed with a built-in “understanding” of the way in
which the underlying components operate. Since the inter-
face software is constructed with information about the
semantics and structure of the other system components to
which it provides a user interface, it can accurately present a
view of their operation. In view of the strong connection
between the application and interface, we’ll call this thecon-
nected strategy. The second,disconnected strategy is
perhaps more common in modern, “open” systems. In this
approach, the interface component has little understanding
of the workings of other system components, which may
actually have been created later than the interface itself, and
so it must infer aspects of application behaviour from lower-
level information (network and disk activity, memory usage,
etc.). Essentially, itinterprets this information according to
some set of conventions about application structure and
behaviour; perhaps the conventions that support a particular
interface metaphor.

However, there are serious problems with both of these
approaches. The connected approach is the more accurate,
since it gives interfaces direct access to the structure of
underlying components and applications. However, this
accuracy is bought at the expense of cleanliness and modu-
larity. This is clearly bad practice; but perhaps, if it were the
only problem, it would just be the price we have to pay for
effective interface design. Unfortunately, it’s not the only
problem. Perhaps more critically,extensibility is also bro-
ken. Because of the complex relationship between interface
and application, a new application cannot be added later
once the interface structure is in place. The interface and
application cannot be designed in isolation, and so a new
application cannot be added without changing the internals
of the interface software. The result is that this solution is
inappropriate for generic interfaces, toolboxes and libraries,
which provide standard interface functionality to a range of
applications.

So what of the disconnected approach? The problem here is
that, while it leads to modular and extensible designs, it is not
reliably accurate. The relationship between the low-level
information it uses and the higher-level inferences it makes
is complex and imprecise. Also, there are problems of syn-
chronisation. Because the representations of activity that the
disconnected approach manipulates are implicit, its infer-
ences can be consistent with the available information but
out-of-step with the actual behaviour of the system. This
approach, then, is largely heuristic; and so its accuracy
cannot be relied upon, particularly for detailed information.

Essentially, the connected approach istoo connected, and the
disconnected approach istoo disconnected.

3.1 Example: Duplex Copying

As a way of grounding this problem, imagine a digital pho-
tocopier. It offers various familiar system services—such as
copying, scanning, printing, faxing—as well as other com-
putationally-based functions, such as image analysis,
storage/retrieval and so forth. A generic user interface
system provides the means to control these various services,
perhaps remotely over a network.

Somebody wishes to use the copying service to copy a paper
document. The paper document is 20 pages long, printed
double-sided (i.e. 10 sheets), and the user requests 6 double-
sided (“duplex”) copies. Half way through the job, the copier
runs out of paper and halts.

What state is the machine in? How many copies has it com-
pleted? Has it made 3 complete copies of the document, or
has it made 6 half-copies? The answer isn’t clear; in fact,
since copiers work in different ways, it could well be either.
However, the critical question here concerns the interface,
not the copierper se. How does the interface component
react to this situation? What does it tell the user is the state
of the device? And, given that this is a generic interface com-
ponent which was constructed separately from the copier’s
other services, how does the interface component evenknow
what to tell the user, or how to find out the state?

This situation doesn’t simply arise from “exceptional” cases,
such as empty paper trays, paper jams and the like. It also
occurs at any point at which the user has to make aninformed
judgement about what to do next, such as whether to inter-
rupt the job to allow someone else to use the machine
urgently, whether it’s worth stopping to adjust copy quality,
and so forth. Even the decision to go and use a different
copier requires an assessment of the current machine’s
behaviour. What these situations have in common with the
exception case of an empty paper tray is that, as users, we
must rely on the interface to support and inform our action,
even when we find ourselves stepping outside the routinised
“process” which the interface embodies. When the interface
presents system activity purely in terms of the routine—or
when its connection to the underlying system service gives it
no more information than that—then we encounter the famil-
iar tension between technological rigidity and human
flexibility.

4 Accounting for System Action

The elements of the story we have presented so far resonate
strongly with ideas which the reflection community has
explored since the early 1980’s. The problems of self-repre-
sentation and disclosure in section 2 are essentially the same
as those tackled by 3-Lisp [Smith, 1982]; and the problems
of connection and abstraction barriers in section 3 are essen-
tially those of Open Implementation [Kiczales, 1992; 1996].
It seems natural, then, that we should look towards the prin-

ciples and techniques of computational reflection for
solutions to the problems we have set out, and for the foun-
dation of a new form of interactive system design.

Just as open implementations address problems of connec-
tion between system components, we can use the same
approach to address the “interface connection” problems of
section 3. So consider an alternative view of an open imple-
mentation’s reflective self-representation. Consider it as an
“account” that a system component presents of its own activ-
ity. Being a self-representation, it is generated from within
the component, rather than being imposed or inferred from
outside; being reflective, it not only reliably describes the
state of the system at any given point, but is also a means to
affect that state and control the system’s behaviour.

Such an account has a number of important properties. It is
an explicit representation—that is, computationally extant
and manipulable within the system. It is, crucially,part of the
system, rather than simply being a story we might tell about
the system from outside, or a view we might impose on its
actions. It is abehavioural model, rather than simply a struc-
tural one; that is, it tells us how the system acts, dealing with
issues of causality, connection and temporal relationships,
rather than just how the system’s elements are statically
related to each other. However, the account itself has struc-
ture, based on defined patterns of (behavioural) relationships
between the components of the account (perhaps relation-
ships such asprecedes, controls, invokes, and so forth).

Most importantly, we place this requirement on the
account—that it “accounts for” the externally-observable
states of the system which presents it. That is, it is a means
by which to make a system’s behaviour accountable. The
behavioural description which the system provides should be
able to explain how an externally-observable state came
about. This critical feature has various implications, which
will be discussed shortly. First, however, let’s return to the
duplex photocopying example.

4.1 Accounting for Duplex Copying

If we adopt this notion of “accounts,” then the copy service
(which provides copying functionality in the copier, and
which lies below the interface component alongside other
system services) provides not only a set of entry points to its
functionality—the traditional abstraction interface, often
called an “Application Programming Interface” or API—but
also a meta-interface or account, a structured description of
its own behaviour. The API describes “what the service can
do”; the account describes “how the service goes about
doing it”. It describes, at some level, the sequence of actions
which the service will perform—or, more accurately, a
sequence of actions whichaccounts for the externally-
observable states of the system. So, if the interface has access
to details not only of the functionality offered by the copying
service, but also an account of how it operates in terms of

page copying sequences and paper movement, then it can
provide a user with appropriate information on the state of
the service as it acts, and continuation or recovery proce-
dures should it fail.

So, this notion of reflective self-representations as
“accounts” provides a solution to the problems raised in the
duplex copying example. More importantly, in doing so, it
also provides a solution to the connection problem raised in
section 3. The interface module does not have toinfer activ-
ity information (as was necessary with the disconnected
interface strategy). Instead, it can present information about
the system accurately because the information it presents
comes directly from the underlying components themselves
(where it is causally connected to their actual behaviour). At
the same time, information about the structure and semantics
of those components is not tacitly encoded in the interface
module (as it was in the connected interface strategy).
Instead, this information is explicitly made available from
the components themselves. It is manifested in accounts they
offer of their actions which the interface module can use,
preserving the modularity and extensibility properties of a
disconnected implementation. This balance between the
connected and disconnected approaches is maintained
through the two critical aspects of the reflective approach:
explicit representations andcausal connection.

To understand the ways in which accounts can support inter-
face activity, we first have to look in more detail at the
properties of accounts themselves.

5 Exploring Accounts

Accounts and reflective self-representations are essentially
the same thing; our use of the term “accounts” connotes a
particular perspective on their value and use. By the same
token, the familiar properties of reflective representations
also apply to accounts; but they may have particular conse-
quences for a use-oriented view.

One important issue, which derives from our grounding in
research on Open Implementations, is that accounts reveal
aspects ofinherent structure rather than the details of spe-
cific implementations. In other words, the account presents a
rationalised model of the behaviour of the system, revealing
some details and hiding others, as required by the purposes
to which its designer intends it to be put. It both enables and
constrains. The account stands in a two-way semantic rela-
tionship to the implementation itself; this much is guaranteed
by the causal connection. But that relationship is not a direct
one-to-one mapping between the elements of the implemen-
tation and the elements of the account. We can perhaps think
of an account as being a particularregistration of the imple-
mentation; a view of the implementation which reveals
certain aspects, hides others, and highlights and emphasises
particular relationships for some specific purpose.

So the account need not be “true” in an absolute sense; it is
accurate or precise for the purposes of some specific use, in
context. The system may well have to go to some lengths to
maintain the validity of the account in particular circum-
stances. Imagine, for instance, that the “copying” account of
section 4.1 presented, for simplification, a model in which
only one page was being processed at any moment. How-
ever, even fairly simple copiers typically process multiple
sheets concurrently, to increase throughput. This would be
perfectly validas long as for any observable intermediate
state—that is, any point where a user (or user interface)
might intervene in the process, either through choice or
necessity—the system can put itself into a state which is
accounted for purely in terms of the model offered.

Naturally, this begs the question: what states are observable?
There is no absolute answer to this question; like any other
reflective representation, not only does it depend to some
extent on the structure of implementations, but it also
depends on theneeds of the user in some particular situation.
This reflects a tension in the account betweenaccuracy and
precision. The account must, at all times, be accurate; that is,
in its own terms, it must correctly represent the state and
behaviour of the system. However, this accuracy may be
achieved by relaxing its precision, the level of detail which
the account provides. Relaxing precision allows the system
more flexibility in the way it operates.

The invariant property, though, is that ofaccountability; that
the system be able to account for its actions in terms of the
account, or that it should be able to offer an account which is
not incompatible with previously offered accounts. In these
terms, accountability is essentially a form ofconstructed
consistency. This aspect of the account draws further on the
relationship between account-oriented improvisation of
activity and the ethnomethodological perspective presented
earlier. Accounts and representations in social interaction are
given their authority and validity by the pattern of social
relationships which back them up, and by which one is, to a
greater or lesser extent, heldaccountable to one’s words and
actions. So, the utility of an interface account depends on the
backing that the system offers—in this case, the guarantees
sustained by the causal connection. It is this notion of
accountability, based in the direct relationship between
action and representation, which is at the heart of this pro-
posal, and which distinguishes accounts from simple
simulations.

However, accountability is by no means the only significant
property deserving discussion here. Another cluster of issues
revolve around accounts being inherentlypartial. An
account selectively presents and hides particular aspects of a
system and its implementation. It iscrafted for specific pur-
poses and uses. By implication, then, it is alsovariable; the
level of detail and structure is dependent on particular cir-

cumstances and needs, as well as the state of the system itself
at the time.

This is another area where the balance between accuracy and
precision becomes significant. This variability must also
depend on the recipient of the account, which isdirected
towards specific other entities, be they system components
or users. The whole range of ways in which accounts are
only partially complete and are designed for particular cir-
cumstances (in a way that reflects the balance of needs
between the producer and receiver of the account) is
reflected in the use of the term “account”. Included in this is
the principle that variability is dynamic; the account is the
means by which structure and information can be gradually
revealed, according to circumstances. To draw again on the
ethnomethodological metaphor this variablility corresponds
to the idea ofrecipient design in conversation analysis; the
crafting of specific utterances for a particular recipient or
audience. This level of specificity also emphasises that
accounts areavailable for exploration, rather than being the
primary interface to a system component. We don’t have to
deal in terms of the account at all times, but we can make
appeal to it in order to understand, rationalise or explain
other behaviour.

One final property is important here. Again as derived from
reflective self-representations, an account iscausally con-
nected to the behaviour it describes. It is not simply “offered
up” as a disconnected “story” about the system’s action, but
stands in a more or less connected causal relationship to it.
Changes in the system are reflected in changes in the repre-
sentation, and vice versa. The critical consequence of this is
that the account be computationallyeffective—an account
provides the means not only to describe behaviour, but also
to control it. The link between the account and the activity is
bidirectional. The account is a means to make modifications
to the way in which the system works—it provides the terms
and the structure in which such modifications are described.

accuracy precision

partiality

directednessvariability

accountability

system action

representation

causal connection

FIGURE 2: The account lives in a balance between accuracy
and precision. When precision is loosened, through partiality,
etc, the causal connection sustains its accountability.

7

Indeed, the structure of the account clearly constrains the
sorts of modifications that are allowed, whether these are
changes to the action of the system itself, or—more com-
monly, perhaps— manipulations of the internal processing
of specific jobs in progress.

6 Accounts and Users

Previous sections used an example of a duplex copying task
as an illustration of the value of an account-based approach
to system architecture. The copying example illustrates one
way of using these representations. The use of accounts in
that example is derived fairly directly from explorations over
the past few years of the use of reflective representations and
metalevel architectures in system design. At the system
level, reflective representations or accounts can provide a
critical channel of communication between system compo-
nents or modules, and in particular offer a solution to the
problem of connection in generic interfaces.

However, it is interesting to examine a more radical use of
accounts—their use at theuser level. The goal here is to
address more directly the disparity that was highlighted in
the introduction, between the improvised, resource-based
nature of actual work and the process-driven model assured
in classical interface design. The accounts model is an
attempt to address this by thinking of computational repre-
sentations as resources for action. On the one hand, the
account mechanism builds directly on the importance of the
“stories systems tell” about their activity; and on the other,
the causal connection and principle of accountability (or
constructed consistency) supports the variability of use.
Accounts provide a computational basis for artful action.

6.1 Example: File Copying

Let’s consider a second example—a real-world interface
problem with its origins in a breakdown of abstraction.
Imagine copying a file between two volumes (say, two disks)
under a graphical file system interface. You specify the name
of the file to be copied and the name of the destination file;
after you start the copy, a “percentage done” indicator (PDI)

appears to show you how much of the copy has been com-
pleted. This generally works pretty well, especially when the
two volumes are both connected to your own machine. But
consider another case, which isn’t so uncommon. You want
to copy a file from a local volume to a remote volume on a
nearby fileserver over a network. This time, when you copy
the file, the PDI appears and fills up to 40% before the
system fails, saying “remote volume unavailable”. What’s
happened? Was 40% of the file copied? Did all of the file get
40% there? Most likely, none of the file ever reached the
remote volume; instead, 40% of it wasread on the local disk
before the machine ever tried to reach the remote volume.
What’s more, there’s no way to tellhow the remote volume
is unavailable; on some systems, this might even mean you
don’t have your network cable plugged in (and so the remote
volume wasnever available). Finally, a failure like this
makes you wonder... just what’s the PDI telling you when
thingsare working?

In general, there’s simply no way to see at which point in the
copy failure occurred, since the interface presents no notion
of the structure or breakdown of behaviour and functionality
that’s involved. In fact, the notion of a partially-completed
copy makes little sense when offered in the interface, since
the interface doesn’t even offer terms in which to think about
what’s going on. What does it mean when the copy is par-
tially completed, and when the PDI indicates there’s more to
do?

We can begin to address this problem by looking for the
inherent structure of the example. Start by reifying the vari-
ous areas where data might reside at any moment; files,
buffers, caches, the network, interface cards, etc. The details
are not important; they’re specific elements of an implemen-
tation, rather than inherent features. The essential point is
simply that there are some number of these “data buckets”;
that some are files and some are not; and that the process of
copying a file involves connecting a series of them together
to get data from one place to another. So we end up with a
structure rather like that in figure 3.

In this figure, we see a set of data buckets connected
together, indicating the flow of data between two points.

������� �������

FIGURE 3: A structural model of the file copying example in terms of data buckets and the connections between
them. Connections between elements of this model are the points at which strategies and policies can be identified.

flow strategy
strategy

name mapping

Some of these buckets (the end points) are files; they exist
independently of the particular copy operation, and are dis-
tinguished with names1. The other data buckets are
temporary intermediate ones. The flow of data through the
system is determined by the strategies used at the connection
points between the data buckets. A wide range of mecha-
nisms could be used: flushing a buffer on overflow or an
explicit flush, transferring data between buffers in different
units, etc. The point isn’t which mechanism is used in any
given case. Rather, it is that the account gives the interface—
and the user—a structure and vocabulary for describing the
situation. In terms of this vocabulary, aspects of system
behaviour can be explicated and controlled.

So when the particular configuration in some given situation
is available for exploration, we can begin to answer ques-
tions about the interface and system behaviour. Just as the set
of flow strategies characterises the flow of data through the
system as a whole, so the flow can be controlled through the
selection of strategies; and the behaviour of the percentage-
done indictor is connected to (characterised and controlled
by) the point in this sequence where it is “attached”. Should
it be attached towards the left-hand side, for instance, then it
will tend to reflect only the local processing of data—not its
transmission across the network, which is often of greater
importance to the user, and which caused the failure in the
case we were considering2. However, without any terms of
reference, it isn’t possible to talk about “where” the indicator
is attached—far less to move it around. When needed, then,
the account provides these terms of reference; an explicit
structure within which specific actions can be explained, and
their consequences explored. This structure—one within
which exploration and improvisation can be supported—is
not supported by traditional interactive software structures
which make details inaccessible behind abstraction barriers.

This account is aimed at solving interface problems arriving
from the traditional file system abstraction, which arise
because file system operations are characterised purely in
terms ofread andwrite operations. This takes no account of
whether the operations are performed locally or remotely,
and the consequences of such features for the way in which
the interface should behave. The abstraction has hidden the
details from higher levels of the system, but those details turn
out to be crucial to our interactions3.

1. In fact, naming is a separate issue in the account which a system
provides; in this example, its relevance is that the source point
named is a file, whereas the end point is given a namebefore a file
exists there. However, the issue of naming is not discussed in this
example.

2. Note a second extremely confusing—and potentially danger-
ous—failure which can result here. The PDI can indicate 100%
copied, before the remote volume complains that it’s full after
writing only 40% of the file. Which report should be trusted?

This example illustrates a number of general points on the
nature and use of accounts. First, consider the relationship
between the model and the system itself. Unlike other
approaches to interface visualisation, the model arises from
the structure of the system and isembodied in the system. It
is not imposed from outside. It is general, in that it does not
reflect the details of a particular implementation, but rather
reflects the inherent structure of all (or a range of) implemen-
tations. It is a gloss for the implementation, explicitly
revealing and hiding certain features deemed “relevant”.

Second, consider the relationship between the account and
the activity. The causal relationship renders the account
“true” for external observation; because it is of the system
itself, rather than simply of an interface or other external
component, it is reliable in its relationship to the actual
behaviour represented. However, the level of detail it pre-
sents reflects the balance between accuracy and precision;
while it accurately accounts for the behaviour of the system,
it only reveals as much as is necessary for some particular
purpose—in this case, explaining the curious “40% complete
then 100% failure” behaviour.

Third, it allows us to talk not only about structure, but about
“strategies”; that is, it is a behavioural model, not simply an
architectural one. This means that the system can break
down and “reason about” policy and strategy. An account is
not simply a name for a way of doing something, but
describes the pattern of relationship between its constituent
activities; and this is critical to the way it’s used.

7 Perspectives and Conclusions

There is a tension between the traditional process-oriented
view of user interfaces and interaction—interfaces as cur-
rently designed—and the view of interface work as the
locally-improvised management of contingencies that has
been emerging over the past ten years or so. This tension
becomes particularly troublesome when we attempt to incor-
porate some of the insights of sociological investigations
into system design. In this paper, we have argued that
addressing this problem not only means rethinking the way
in which we go about systems design, but also leads to a new
approach to the nature of the systems which we design. In
focusing on the resources that support improvised work at
the interface, we have been concerned here with how users
understand system activity, and in particular with the way
that systems and devices find and present such information.
This reveals a problem in the structure of interactive sys-
tems—a problem of connection between system
components.

3. In fact, problems of this sort can be seen in a wide range of sys-
tems where network filestores have been grafted on within the
abstractions designed for local filestores, because “you needn’t
worry if the file is local or remote”.

Accounts are causally-connected representations of system
action that systems can offer as explications of their own
activity. They are inherently partial and variable, selectively
highlighting and hiding aspects of the inherent structure of
the systems they represent, but, being views of the system
from within rather than without, they are reliable representa-
tions of ongoing activity. A system is held accountable to its
account; that is, the account must adequately “explain” the
observable states of the system that offered it.

This work is part of an ongoing investigation of the relation-
ship between sociological and ethnomethodological
perspectives on work and interaction and the practice of sys-
tems architecture and design. A number of groups,
particularly investigating the use of collaborative technolo-
gies, have attempted to integrate ethnomethodology into
their design methods. The approach we have been exploring,
however, addresses this integration as a theoretical, as well
as a practical, concern [Button and Dourish, 1996]. In our
work over the last two years, we have focussed on the use of
reflection and metalevel implementation techniques to
address problems in system architecture and use. The expli-
cation and reification of semantic structures in the reflective
approach, making them amenable to examination and
manipulation, has provided an opportunity to focus not on
how usage issues can be encoded within systems, but rather,
at how the flexibility inherent in everyday activity can be,
itself, the subject of computation. Rather than attempting to
“lift the system to the user’s level” (for instance, through the
use of AI techniques), or “lower the user to the system’s
level” (by forcing users to address their work in system
terms), we have been exploring, instead, how the mediation
between these two levels can be flexibly and fruitfully
accomplished.

Acknowledgments

Many colleagues have contributed to these ideas and to this
presentation of them. We are indebted to Bob Anderson,
Graham Button, Beki Grinter, Austin Henderson, Gregor
Kiczales, David Levy, Gene McDaniel, Bob Printis and
Randy Trigg for comments, inspiration and support in the
development of this work.

References

[Button and Dourish, 1996] Graham Button and Paul Dour-
ish, “Technomethodology: Paradoxes and Possibilities”, to
appear in Proc. ACM Conference on Human Factors in
Computing Systems CHI’96, Vancouver, Canada, May
1996.

[Garfinkel, 1967] Harold Garfinkel,“Studies in Ethno-
methodology”, Prentice-Hall, New York, 1967.

[Gibson, 1979] J. J. Gibson,“The Ecological Approach to
Visual Perception”, Houghton Mifflin, New York, 1979.

[Kizcales, 1992] Gregor Kiczales, “Towards a New Model of
Abstraction in the Engineering of Software”, Proc. IMSA
Workshop on Reflection and Metalevel Architectures,
Tokyo, Japan, November 1992.

[Kiczales, 1996] Gregor Kiczales, “Open Implementations”,
IEEE Software, pp. 6—11, January 1996.

[Smith, 1982] Brian Smith, “Reflection and Semantics in a
Procedural Language”, MIT Laboratory for Computer Sci-
ence Report MIT-TR-272, 1982.

[Suchman, 1987] Lucy Suchman,“Plans and Situated
Actions: The problem of human-machine communication”,
Cambridge University Press, Cambridge, UK, 1987.

