
Caching Documents with Active Properties

Eyal de Lara∗, Karin Petersen, Douglas B. Terry, Anthony LaMarca, Jim Thornton, Mike
Salisbury, Paul Dourish, Keith Edwards, and John Lamping

Computer Science Laboratory
Xerox Palo Alto Research Center

∗ Department of Electrical and Computer Engineering, Rice University

Abstract
Caching in the Placeless Documents system poses new
challenges because users can attach active properties to
documents. Active properties can modify the document’s
content as seen by a user. Thus, the caching mechanisms
must take into account that a document’s content not only
depends on when the document was last modified, but also
on the set of personal and universal properties attached to
the document and the information on which these
properties depend. Interestingly, active properties can be
used to help caches manage their contents by notifying
them of events that affect cache consistency, by providing
caches with document-specific verifiers to further check
on a document’s consistency, and by returning
information that can aid in decisions of which documents
to cache.

1. Introduction
The Placeless Documents project at Xerox has

designed and implemented a document management
system based on personalized document properties. In this
system, document properties are statements about the
context of a document or the intended behavior for the
document. Sample properties are “keep at home and the
office”, “translate to French”, or “budget related”.
Properties can be static labels like “budget related”, or
active objects that implement a desired behavior, like
replicating a document between a user’s home and his
office. Document properties are said to be personalized
because they are managed on a per-user basis. The scope
of a property applies to a document within a document
space that can be owned by an individual or a group of
people. This scoping rule allows different users to assign
different meanings or behaviors to the same document.
Furthermore, properties in the Placeless Documents
system can be attached to documents originating from
arbitrary content sources: file systems, the World Wide
Web (WWW), e-mail servers, document management
systems (DMS), live video feeds, etc. Personalized
properties can thus be attached to a wide range of
documents and be used as a uniform mechanism to
interact with all these documents.

In this paper we focus on how active properties affect
caching of document content in the Placeless Documents
system. Because active properties provide a mechanism to
add new behavior to a document, they can change the
actual content delivered to the user or an application. For
example, the “translate to French” property can return an
English document in French. Similarly, a “summary”
property may return a condensed version of the document
instead of its original in full length. Furthermore, since
users can personalize their document use by attaching
different active properties to a document, caching the
content for these users may mean that different versions of
the content need to be cached. For example, one user may
attach the French translation property to a document.
Other users may retrieve it in the original language or
execute a different transformation, like summarization.
Active properties therefore affect how much sharing of
cached content can occur. Active properties also affect
cache consistency. The cached content of a Placeless
document depends not only on its original content, but
also on the transformations applied by active properties.
Thus changes to the type, number or order of the
properties attached to a document, changes in the
information these properties depend on, as well as
changes to the original content of the document can render
the cached content for the document out-of-date.

The rest of the paper describes the issues and
opportunities of active properties for caching in the
Placeless Documents system. In particular, we show how
active properties themselves can be used to implement
custom per-document caching policies. To ground the
discussion we first describe the Placeless Documents
design in more detail. To close we report preliminary
results obtained from a prototype implementation.

2. Placeless Documents Design
The Placeless Documents system is designed to

provide an uniform, individualized, property-based
interface to arbitrary sets of documents. The design is
based on the philosophy that documents of interest come
from many different sources and often have many more
consumers than authors. The system therefore needs to

accommodate the individual needs of multiple users. To
this end, the system supports two types of document
objects as illustrated in Figure 1: base documents and
document references.

- keep copy
 at Rice

Document
References

Base
Document

Eyal Paul Doug

Eyal

/tilde/ edelara/hotos.doc

- spell correct - 1999
 workshop
 submission

 - read by
 11/30

- version

Figure 1. Properties are attached to base
documents and document references

A base document is the link to the actual content of
the document and is generally owned by either the author
of the content or the person or group that imported the
document into the local environment. A document
reference points to the base document. Each user of the
document owns a separate document reference. Both base
documents and document references can contain
properties, and we deem these properties to be “attached”
to documents. Properties attached to the base document
are called universal because they are seen by all users
with a reference to it. Properties attached to a reference
are called personal properties, and are seen only by the
individual owner of the document reference.

In Figure 1, Eyal owns the base document since he
created the draft of the HotOS paper. A special active
property on the base document, called the bit-provider
(shown as a disk in the figure), is responsible for
retrieving the actual content from its repository. Eyal also
attached an universal property to the base that saves an
old version of the paper each time someone opens it for
writing. Eyal, Paul and Doug personalize their interactions
with the paper through personal properties attached in
their references. One of Eyal’s personal properties
maintains a copy of the content both at PARC and at Rice,
whereas one of Doug’s properties indicates “Read by
November 30th”. Because Eyal is not a native English
speaker, he also attaches a personal property that corrects
the paper’s spelling. Paul is less involved in writing the
paper and only marks it as a “1999 workshop
submission”. All three users see the versioning
information resulting from the universal property on the
base document, but nobody else needs to know that Eyal
keeps two copies of the document, nor do Eyal and Paul
know that Doug plans to review the paper by November
30th.

As demonstrated by the example, properties can be
either active (replication between PARC and Rice) or

static (“1999 workshop submission”). Static properties
tend to be statements about the context of a document,
while active properties serve to provide extended
functionality for the document. Active properties are
event driven. The properties register for events that can
occur on a document, such as getInputStream,
getOutputStream1, modify property, set property, timer,
etc. When an event occurs, all registered properties on that
document are invoked. In the example, both the spelling
correction and the versioning properties are dispatched
when getOutputStream operations are invoked, whereas
the spelling corrector is also invoked on getInputStream.
The replication property is invoked only as a result of
timer events, assuming that Eyal’s replication between
PARC and Rice occurs only once at the end of the day.

Caching of document content is mostly affected by
active properties that transform the input or output
streams. Thus, to further understand how document
content flows between applications and the storage
systems through the Placeless Documents middleware,
consider the previous example which has been expanded
in Figure 2. Imagine that Eyal is editing the paper-draft
from MS-Word. When Word issues the save/write
request, it results2 in a getOutputStream call on Eyal’s
reference to the paper draft. This call is forwarded from
the reference to the base document, which in turn invokes
the call on the bit-provider3. The bit-provider, in this case
an NFS client, opens the corresponding file for writing
and returns the handle to the base document. At the base
document all attached active properties interested in the
getOutputStream operation get dispatched for execution.
There is only one such property, which creates a new
version of the content by generating a copy of the existing
document and adding a new static property to the base
with a link to that copy. The base document then returns
the output-stream handle to the document reference. The
reference dispatches all its active properties interested in
the getOutputStream operation, which in this case means
that it invokes the spelling corrector. Finally the reference
returns an output-stream back to the application.

For an active property like the spelling corrector to
intercept and actually modify the content of the write
operations, the property creates a new custom output-
stream as it processes the event triggered by the
getOutputStream operation. This custom stream
implements the transformations required by the property,

1 The document content I/O model in Placeless is based on Java
Input and Output streams.

2 Read and write operations from off-the-shelf applications are
translated into Placeless I/O operations by a NFS server layer. Newly
developed applications invoke the Placeless API directly.

3 The API actually does not contain calls directly on document
references or base documents, but instead on document spaces, which
are the system components that manage base documents and document
references on a per-user basis. For simplicity of the description,
however, we gloss over these details in the text.

for example, it corrects the spelling of the document being
written. When a write operation is invoked by the
application the active property can operate on the content
by virtue of the custom output-stream. In fact, the active
property hands the custom stream to the next property in
the calling chain for the getOutputStream event, or if it is
the last to the application. Basically, active properties that
modify the document content create a chain of custom
output-streams that will each operate subsequently on the
content that is being written. Similarly, active properties
that modify the content on read operations create chains of
custom input-streams.

Eyal Paul Doug

Eyal

File System

Applications
MS Word

Bit provider

Versioning
property

Spelling
Corrector
Property

Placeless Documents Middleware

readwrite

NFS

/tilde/edelara/hotos.doc

Figure 2. Read and write path through the
active property mechanism.

Properties are on the read path of a document when
they express interest in the getInputStream operation and
interpose their own custom input-stream to intercept all
read operations. Similarly, properties are on the write path
if they interpose a custom output-stream to intercept all
write operations for a document. The execution of custom
input stream functionality on the read path occurs first at
the base document and then at the document reference.
Inversely, custom output-streams on the write path are
first executed at the document reference and then at the
base document. Remember that the read and write paths
for different users have different document reference
components, but share the base document. With this
background on the Placeless system architecture, we now
discuss how active properties affect document content
caching.

3. Document Content Caching
Caching document content in the Placeless

Documents system is important for several reasons.

Document access latencies are affected by the
interposition of active property execution. Document
accesses also require content to be sent from the storage
repository to at least one, possibly two, Placeless servers –
one for the base and possibly another one for the
reference, which increases network traffic and execution
time at each of the servers. Finally, properties may be
used to state Quality-of-Service (QOS) requirements such
as “access time < .25 seconds”, which in turn can benefit
from caching.

The novel features of Placeless Documents that affect
the design of its caching architecture are:
1. Custom active properties can modify the content of a

document on a per-user basis, which may require
multiple versions of the same document to be cached.

2. The properties attached to a document and the order
in which they execute can change the resulting
document content. Cache consistency hence depends
not only on update operations on the content, but also
on transformations by properties attached to the
document.

3. Documents originate from any number of
repositories, many of which provide different
mechanisms to handle cache consistency.
The next subsections describe each of these issues in

more detail. First we focus on the issues related to cache
consistency. Second we address the issues of how to
determine which document content can be cached, how to
manage the cached content, and how to handle cache
replacement.

Cache Consistency
The content of a Placeless document seen by an

application depends on the original content stored at a
repository (WWW, file system, e-mail server, video
camera, etc.) and the transformations applied by the active
properties on the read path for a particular user. Content
cached after the transformations applied by active
properties can therefore become invalid in four ways:
1. The original source is modified. Source
modifications occur either through the Placeless system or
by changes that are not within Placeless control. When an
application, like MS-Word, updates content through the
Placeless system, as in the example above, the system can
snoop on all update operations. On the other hand, source
modifications at the original site, like updates to pages at a
web-site or applications interacting with files directly
through a file system, do not allow the Placeless system to
track these changes. This dual update model can already
be found in the WWW, where an HTTP PUT operation
can modify a page, but pages can also be updated without
involvement of the HTTP server that services them to
clients. Because web-servers so far manage consistency
only based on a time-to-live (TTL) invalidation scheme,
they do no need to handle these two cases differently. The

Placeless system, however, would like to support a cache
management mechanism that accommodates both update
models. Managing consistency with respect to original
sources is further complicated in the Placeless system,
because the consistency mechanisms used by the original
repositories can vary dramatically.
2. Active properties are added, deleted or modified.
For example, when a language translation property is
added to a document, the cached content in a different
language is no longer valid.
3. The order of the active properties changes. For
example, the result of applying a spell checking property
to a document varies whether it is applied before or after a
language translation property.
4. Information used by active properties changes.
Active properties may rely on information that is
completely external to the Placeless system, for example
current time, data stored in databases and other on-line
sources, or internal to the system, such as values of other
document properties like “preferredLanguage=Spanish”.
Again, some of these issues appear in existing systems.
On-line, web-based, active information services, like
financial portfolio tracking and travel status, update their
web-pages when the underlying sources for the
information change: stock market, SABRE database, etc.
In the WWW, the most common solution to this problem
is to make these pages uncacheable. In Placeless
Documents, all documents can be customized through
active properties and hence the issue exists at a much
larger scale and needs a better solution.

In summary, the validity of cached content depends
on operations under the Placeless system control and
operations outside its control. Under Placeless control are
content updates through the Placeless system, property
modifications, and changes to the ordering of properties.
Outside of Placeless control are content modifications at
the source repository of the document and changes to
external information that the active properties depend on.

Notifiers and Verifiers
To handle these different causes of cached content

invalidation, we have experimented with two
mechanisms: notifiers and verifiers. Notifiers are active
properties themselves that are used to invalidate cache
entries resulting from changes through the Placeless
system. Notifiers send a notification to each of the
affected caches to invalidate the corresponding entries.
Notifiers are similar in nature to file-system update
callbacks [4], although, as described next, they can be
extended by active properties to provide property-specific
notifications. Notifiers are more closely related to
semantic validators and callbacks [5], in that semantic
callbacks are triggered only if some predicate is satisfied.
Notifiers, in fact, integrate the notion of semantic
validators and callbacks into one mechanism. On the other

hand, verifiers are pieces of code returned to the cache
along with the document’s content. They are executed
each time an entry is retrieved from the cache and can
determine whether the entry is still valid at that time. In
particular, verifiers can check for conditions that may
change outside of Placeless control. Verifiers are returned
by active properties. For instance the bit-provider will
most likely return a verifier for the original source of the
document. Verifiers are similar to the idea of cache-
applets proposed in the active caching architecture of [2].

To illustrate the use of notifiers and verifiers
consider the HotOS paper draft example we used before,
but assuming a cache that is interposed between the
application (MS-Word) and the Placeless system. When
Eyal first opens the paper from MS-Word, a notifier
property is attached to the base document to invalidate the
cache if the file is opened for writing by another user.
Another notifier at the base tracks any additions or
deletions of active properties that could modify the
content. At Eyal’s document reference, a third notifier is
attached to watch for active property additions, deletions
and for changes in the “spelling corrector” property. If
Eyal were to upgrade his spelling corrector to a new
release, this would trigger an invalidation of the cached
content. Similarly, if Doug were to update the document,
one of the notifiers at the base document would invalidate
Eyal’s cached version. The bit-provider for the file
corresponding to the paper draft returns a verifier that
polls the last-modification time of the file. The verifier
can thus detect that the file has changed in the file system
and invalidate its cached entry.

The power of notifiers and verifiers is that they can
be specific to both document types and active properties
applied to a document. For example, if the cached
document were a WWW document, the verifier could
implement the TTL timeout as specified in the HTTP
response. Verifiers can also serve documents that are
composed of multiple sources, like news summaries
constructed from several web sites; in that case, verifiers
can check the consistency of each of the sources. For a
document with heavy customization, like a financial
portfolio page, the verifier may invalidate the cached
entry only if there has been significant change in the stock
quotes or even modify these values as needed.

Similarly, more sophisticated notifiers can be
constructed as needed. Furthermore, invalidation policies
could either be placed in a notifier or a verifier. For
example, tracking external information that an active
property depends on could be handled by a notifier
installed by that property or a verifier returned by the
property to the cache. In general, verifier execution
trades-off cache consistency with cache access time
latencies, while notifier execution adds load to the
Placeless system. The evaluation of these tradeoffs is
future work.

Cache Management
In addition to determining how to handle cache

consistency, active properties can influence whether
documents are cached at all, how cached content should
be managed, and how to handle cache replacement.

The type of functionality an active property
implements may determine how a document’s content
should be cached. For example, properties that change the
content of the document or the bit provider may deem a
document uncacheable if the retrieved content changes
each time it is accessed, e.g., its source is live video.
Other active properties may need to intercept operations
only to invoke a service but will do nothing with the
content itself. As an example, an active property that
creates a read-audit-trail for a document only needs to
know when read operations occur, but does not need to
receive the actual content being read. Placeless lets active
properties inform the cache of whether and how content
should be cached through a cacheability indicator.

Currently, we provide three cacheability options:
uncacheable, cacheable but operation events need to be
triggered, and unrestricted caching. The three cacheability
options are set by all active properties on the read-path
(caused by a cache miss and load), and these choices
aggregate to the most restrictive value. Thus, when all
properties on the read path have executed, in addition to
the document’s content and the consistency verifiers, the
cache receives the cacheability indicator that specifies
how the content should be handled. When a property
enables caching but requests the cache to trigger operation
events, the cache will forward the operation, but the
Placeless system will not execute them fully, instead just
use them to trigger active properties that have registered
for these events. Assuming a write-through cache, it is
sufficient for just the properties on the read-path to set the
cacheability indicator. With a write-back cache, active
properties on the write-path may need to register their
cacheability requirements as well. Although for most
properties it is likely to be sufficient if they execute on the
write-back operation and hence do not need write
operations to be forwarded at all times, some may want to
know exactly when each write-operation occurs. In that
case these properties should set the cacheability indicator
so that getOutputStream operations get forwarded to the
Placeless system.

The issue of caches hiding operations that need to be
tracked has been discussed extensively in the context of
the WWW [2], however there the solution generally is to
make those pages for which operations are tracked
uncacheable. For Placeless that seemed an unreasonable
restriction. In particular, because the number of caches
storing any particular document for a user is likely to be
small, it is reasonable to assume that the caches can
collaborate with the Placeless system.

The next issue to be addressed is how entries are
identified in the cache. Since the content returned by
users’ references to the same document can vary, the
cache manager must be able to distinguish among these
entries in the cache. Our current implementation tags
content with both a document identifier and the user to
whom the version of the document belongs. Using both
the document identifier and user enables cache
implementations to be shared between users, yet
distinguishes between different versions of the same
document. However, this approach enables no sharing of
cached entries even when the cached content for different
users actually is the same, such as when no active
properties transform the content or when all the
transformations requested by the users are the same.
When a document is first accessed by a given user, the
cache manager can not easily determine whether it can
return the cached content that is maintained for some
other user. However, for subsequent accesses, content
entries could be shared if the cache maps a pair of
document and user identifiers to a content signature (e.g.,
MD5 hash) and in turn these signatures map to the actual
content. On a cache miss for an already cached version of
the same content, only the document and user identifier
mapping to the content signature needs to be established.

Finally, cache replacement policies are also affected
by active properties. Among other things, the latency of
reading a document’s content can vary drastically
depending on the number and execution times of the
active properties attached to a document. A cache may
wish to tailor its replacement policy to favor documents
with numerous or complicated active properties to
increase the benefit that caching provides.

The mechanism we are exploring to handle cache
replacement policies with input from the properties is as
follows: as document content is returned through the read
path to the cache, properties define the replacement cost
for this document. This value is initialized with the cost
determined by the bit-provider to retrieve the original
content from the storage repository and with that covers
the varying access latencies of different document
repositories. Then as properties execute along the read
path, they add their costs to this initial value. Currently,
the cost values used in the implementation are the
execution times of each of the active properties.

4. Current Implementation
We have implemented a prototype of the

mechanisms for cache consistency and cache management
described above in the Placeless system. Cache
consistency was implemented using per document
notifiers (at the base document and/or the reference) and
verifiers that execute at the cache to verify validity on
cache hits. Properties also define whether documents can

parcweb www.rice.edu www.xerox.co.uk
(1915 bytes) (10,883 bytes) (1104 bytes)

no cache 822 1462 2284
cache miss 861 1582 2303
cache hit 10 10 10

Original Source (size)

Table 1. Document content access times in milliseconds for an application-level cache.

be cached and for what operations they can be cached.
The replacement policy used in the implementation is a
version of the Greedy-Dual-Size algorithm [1], based on
the replacement cost supplied by the properties and bit-
provider, as well as on the size of the document and the
access frequency of the document at that cache. We also
experimented with caches co-located with the Placeless
server and on the machine where applications are run.

Very preliminary results show that caching can
effectively hide the latency of a property-based system
like Placeless. Table 1 shows the type of document access
times that the system can achieve when hitting in an
application-level cache (running on the same machine as
the application). It also shows the raw overhead of filling
the cache on a miss. No active properties were associated
with the documents at either the base or the reference in
this experiment. Thus, the results show that the overhead
to create a minimum set of notifiers (to track additions
and deletions of active properties) and the returning of one
TTL-based verifier is small when servicing a cache miss.

5. Future Work
Understanding the tradeoffs between notifier and

verifier usage for various types of documents and
document repositories, and how best to allow active
properties to influence cache replacement policies are
areas for future work. For example, Quality of Service
(QoS) properties, like “always available” or “access time
< .25 seconds”, may need to specify caching requirements
to tailor cache replacement policies. One possibility for
QoS properties to influence cache replacement is to inflate
replacement costs. However, we have yet to evaluate how
programmers can best set the cost values for QoS
requirements, and it may be necessary to add a more
flexible mechanism for these types of properties.
Similarly, mechanisms that tailor caching for related
documents (e.g., contained in a collection) have not been
investigated.

6. Conclusions
Document customization has been an emerging trend

in the WWW. However, in the WWW most of the
customization occurs at the original servers, like
my.yahoo.com, or by designated servers for network or
client adaptation [3]. The Placeless Documents system

allows individual users to customize their documents
through active properties. This generalization introduces
interesting new issues to the problem of document
caching: (1) per-user versions of the same document need
to be cached, (2) cache consistency depends both on
content operations and on operations that manipulate
properties, and (3) the system needs to support the
diversity of cache consistency mechanisms supported by
the documents’ source repositories.

The Placeless Documents system allows properties to
implement custom, per-document caching policies. Cache
consistency is supported through notifier and verifier
mechanisms. In particular, notifiers and verifiers can be
used to interact with the cache consistency mechanisms of
the original document sources. Properties can also expose
information used to tune replacement policies by setting
replacement costs and decide how the cache should
manage cached content by supplying cacheability
information. Evaluation of the tradeoffs in these
mechanisms is future work. However, the implementation
shows potential to achieve good performance without
sacrificing functionality or flexibility.

7. References
[1] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy

Caching Algorithms. In Proceedings of the 1997 USENIX
Symposium on Internet Technology and Systems, pp. 193-
206, Dec. 1997, Monterrey, California.

[2] Pei Cao, Jin Zhang and Kevin Beach. Active Cache:
Caching Dynamic Contents on the Web. Proceedings of
IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing (Middleware
'98), pp. 373-388, September 1998, Lake District, England.

[3] A. Fox, S. D. Gribble, E. Brewer, and E. Amir. Adapting to
Network and Client Variation via On-Demand Dynamic
Distillation. In Proceedings of the ACM 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, Oct. 1996

[4] J. Howard, M. Kazar, S. Menees, D. Nichols, M.
Satyanarayanan, R. Sidebotham, and M. West. Scale and
Performance in a Distributed File System. ACM
Transactions on Computer Systems, 6(1):51-81, Feb. 1988.

[5] M. Satyanarayanan. Fundamental Challenges in
Mobile Computing. In Proceedings of the 15th

Symposium on Principles of Distributed Computing,
pp. 1-7, Philadelphia, PA, 1996.

